Pauly, D. & Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7, 1–9 (2016).
Google Scholar
Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl. Acad. Sci. 113, 5125–5129 (2016).
Google Scholar
Costello, C. et al. The future of food from the sea. Nature 588, 95–100. https://doi.org/10.1038/s41586-020-2616-y (2020).
Google Scholar
Naylor, R. L. et al. Blue food demand across geographic and temporal scales. Nat. Commun. 12, 5413. https://doi.org/10.1038/s41467-021-25516-4 (2021).
Google Scholar
Boyd, C. E., McNevin, A. A. & Davis, R. P. The contribution of fisheries and aquaculture to the global protein supply. Food Secur. 14, 805–827. https://doi.org/10.1007/s12571-021-01246-9 (2022).
Google Scholar
FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en. (2022).
Vasilakopoulos, P., Maravelias, C. D. & Tserpes, G. The alarming decline of Mediterranean fish stocks. Curr. Biol. 24, 1643–1648 (2014).
Google Scholar
Stergiou, K. I., Tsikliras, A. C. & Pauly, D. Farming up Mediterranean food webs. Conserv. Biol. 23, 230–232 (2009).
Google Scholar
FAOSTAT. Food and agriculture data. Retrieved from: http://www.fao.org/faostat/en/#home. (2022).
Trujillo, P., Piroddi, C. & Jacquet, J. Fish farms at sea: The ground truth from google earth. PLoS One 7, e30546. https://doi.org/10.1371/journal.pone.0030546 (2012).
Google Scholar
Atalah, J. & Sanchez-Jerez, P. Global assessment of ecological risks associated with farmed fish escapes. Global Ecol. Conserv., e00842 (2020).
Arechavala-Lopez, P., Toledo-Guedes, K., Izquierdo-Gomez, D., Šegvić-Bubić, T. & Sanchez-Jerez, P. Implications of sea bream and sea bass escapes for sustainable aquaculture management: a review of interactions, risks and consequences. Rev. Fisher. Sci. Aquac. 26, 214–234 (2018).
Google Scholar
Lorenzen, K., Beveridge, M. C. & Mangel, M. Cultured fish: integrative biology and management of domestication and interactions with wild fish. Biol. Rev. 87, 639–660 (2012).
Google Scholar
Glover, K. A. et al. Atlantic salmon populations invaded by farmed escapees: quantifying genetic introgression with a Bayesian approach and SNPs. BMC Genet. 14, 1–19 (2013).
Google Scholar
Madhun, A. S. et al. Potential disease interaction reinforced: double-virus-infected escaped farmed Atlantic salmon, Salmo salar L., recaptured in a nearby river. J. Fish Dis. 38, 209–219 (2015).
Google Scholar
Arechavala-Lopez, P., Uglem, I., Fernandez-Jover, D., Bayle-Sempere, J. T. & Sanchez-Jerez, P. Post-escape dispersion of farmed seabream (Sparus aurata L.) and recaptures by local fisheries in the Western Mediterranean Sea. Fish. Res. 121, 126–135 (2012).
Google Scholar
Žužul, I. et al. Spatial connectivity pattern of expanding gilthead seabream populations and its interactions with aquaculture sites: a combined population genetic and physical modelling approach. Sci. Rep. 9, 1–14 (2019).
Google Scholar
Šegvić-Bubić, T. et al. Genetic characterization of wild and farmed European seabass in the Adriatic sea: Assessment of farmed escapees using a Bayesian approach. ICES J. Marine Sci. 74, 369–378 (2017).
Google Scholar
Arechavala-Lopez, P., Sanchez-Jerez, P., Bayle-Sempere, J. T., Uglem, I. & Mladineo, I. Reared fish, farmed escapees and wild fish stocks—a triangle of pathogen transmission of concern to Mediterranean aquaculture management. Aquac. Environ. Interact. 3, 153–161 (2013).
Google Scholar
Dimitriou, E., Katselis, G., Moutopoulos, D. K., Akovitiotis, C. & Koutsikopoulos, C. Possible influence of reared gilthead sea bream (Sparus aurata L.) on wild stocks in the area of the Messolonghi lagoon (Ionian Sea, Greece). Aquac. Res. 38, 398–408. https://doi.org/10.1111/j.1365-2109.2007.01681.x (2007).
Google Scholar
Brown, C., Miltiadou, D. & Tsigenopoulos, C. S. Prevalence and survival of escaped European seabass Dicentrarchus labrax in Cyprus identified using genetic markers. Aquac. Environ. Interact. 7, 49–59 (2015).
Google Scholar
Izquierdo-Gómez, D., Arechavala-Lopez, P., Bayle-Sempere, J. T. & Sánchez-Jerez, P. Assessing the influence of gilthead sea bream escapees in landings of Mediterranean fisheries through a scale-based methodology. Fish. Manage. Ecol. 24, 62–72 (2017).
Google Scholar
Glamuzina, B. et al. Observations on the increase of wild gilthead seabream, Sparus aurata abundance, in the eastern Adriatic Sea: Problems and opportunities. Int. Aquat. Res. 6, 127–134 (2014).
Google Scholar
Jackson, D. et al. A pan-European valuation of the extent, causes and cost of escape events from sea cage fish farming. Aquaculture 436, 21–26. https://doi.org/10.1016/j.aquaculture.2014.10.040 (2015).
Google Scholar
Toledo-Guedes, K., Sanchez-Jerez, P. & Brito, A. Influence of a massive aquaculture escape event on artisanal fisheries. Fish. Manage. Ecol. 21, 113–121 (2014).
Google Scholar
Izquierdo-Gomez, D. & Sanchez-Jerez, P. Management of fish escapes from Mediterranean Sea cage aquaculture through artisanal fisheries. Ocean Coast. Manage. 122, 57–63. https://doi.org/10.1016/j.ocecoaman.2016.01.003 (2016).
Google Scholar
Maritime Affairs and Fisheries. (2022).
Arechavala-Lopez, P., Uglem, I., Fernandez-Jover, D., Bayle-Sempere, J. & Sanchez-Jerez, P. Immediate post-escape behaviour of farmed seabass (Dicentrarchus labrax L) in the Mediterranean Sea. J. Appl. Ichthyol. 27, 1375–1378 (2011).
Google Scholar
Jensen, Ø., Dempster, T., Thorstad, E., Uglem, I. & Fredheim, A. Escapes of fishes from Norwegian sea-cage aquaculture: Causes, consequences and prevention. Aquac. Environ. Interact. 1, 71–83 (2010).
Google Scholar
Papageorgiou, N. et al. Changes of the Mediterranean fish farm sector towards a more sustainable approach: A closer look at temporal, spatial and technical shifts. Ocean Coast. Manage. 214, 105903. https://doi.org/10.1016/j.ocecoaman.2021.105903 (2021).
Google Scholar
Granger, C. W. J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438. https://doi.org/10.2307/1912791 (1969).
Google Scholar
Rodionov, S. N. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. https://doi.org/10.1029/2004GL019448 (2004).
Google Scholar
Watson, R. & Pauly, D. Systematic distortions in world fisheries catch trends. Nature 414, 534–536 (2001).
Google Scholar
Froese, R., Zeller, D., Kleisner, K. & Pauly, D. What catch data can tell us about the status of global fisheries. Marine Biol. 159, 1283–1292 (2012).
Google Scholar
FAO. The State of Mediterranean and Black Sea Fisheries 2020. General Fisheries Commission for the Mediterranean. Rome. https://doi.org/10.4060/cb2429en. (2020).
Amores, A., Marcos, M., Carrió, D. S. & Gómez-Pujol, L. Coastal impacts of Storm Gloria (January 2020) over the north-western Mediterranean. Nat. Hazards Earth Syst. Sci. 20, 1955–1968. https://doi.org/10.5194/nhess-20-1955-2020 (2020).
Google Scholar
Akyol, O., Özgül, A., Şen H., Düzbastılar, F. & Ceyhan, T. Determining potential conflicts between small-scale fisheries and sea-cage fish farms in the Aegean Sea. Acta Ichthyologica et Piscatoria 49(4), 365–373. https://doi.org/10.3750/AIEP/02681 (2019).
Somarakis, S., Pavlidis, M., Saapoglou, C., Tsigenopoulos, C. S. & Dempster, T. Evidence for ‘escape through spawning’ in large gilthead sea bream Sparus aurata reared in commercial sea-cages. Aquac. Environ. Interact. 3, 135–152 (2013).
Google Scholar
Glaropoulos, A., Papadakis, V. M., Papadakis, I. E. & Kentouri, M. Escape-related behavior and coping ability of sea bream due to food supply. Aquac. Int. 20, 965–979 (2012).
Google Scholar
Glaropoulos, A., Papadakis, V. M., Papadakis, I. E., Georgara, A. & Kentouri, M. Sea bream interactions toward the aquaculture net due to the presence of micro-fouling. Aquac. Int. 22, 1203–1214 (2014).
Google Scholar
Papadakis, I. E., Papadakis, V. M., Glaropoulos, A., Lamprianidou, F. & Kentouri, M. Escape-related behavior of juvenile gilthead sea bream (Sparus aurata) versus rearing density in experimental conditions. J. Biol. Res. 20, 208 (2013).
Arechavala-Lopez, P. et al. Postescape behaviours of farmed seabream and seabass. In: Prevent Escape project compendium. Chapter 4.5. Commission of the European Communites, 7th Research Framework Program. https://personal.ua.es/es/bayle/documentos/2013-arechavala-et-al-post-escape-behavior-farmed-seabream-seabass-prevent-escape-chapter-4.5.pdf. (2013).
Samaras, A. et al. Allostatic load and stress physiology in european seabass (Dicentrarchus labrax L) and gilthead seabream (Sparus aurata L). Front. Endocrinol. https://doi.org/10.3389/fendo.2018.00451 (2018).
Google Scholar
Uglem, I. et al. Extent and ecological importance of escape through spawning in sea-cages for Atlantic cod. Aquacult Environ Interact 3, 33–49. https://doi.org/10.3354/aei00049 (2012).
Villasante, S., Rodríguez-González, D., Antelo, M., Rivero-Rodríguez, S. & Lebrancón-Nieto, J. Why are prices in wild catch and aquaculture industries so different?. Ambio 42, 937–950 (2013).
Google Scholar
Lleonart, J. & Maynou, F. Fish stock assessments in the Mediterranean: State of the art. Scientia Marina 67, 37–49 (2003).
Google Scholar
Dimitriou, E., Katselis, G., Moutopoulos, D. K., Akovitiotis, C. & Koutsikopoulos, C. Possible influence of reared gilthead sea bream (Sparus aurata L) on wild stocks in the area of the Messolonghi lagoon (Ionian Sea, Greece). Aquacult. Res. 38, 398–408 (2007).
Google Scholar
Arechavala-Lopez, P., Valero-Rodriguez, J. M., Peñalver-García, J., Izquierdo-Gomez, D. & Sanchez-Jerez, P. Linking coastal aquaculture of meagre Argyrosomus regius and Western Mediterranean coastal fisheries through escapes incidents. Fish. Manage. Ecol. 22, 317–325 (2015).
Google Scholar
Froese, R. et al. Status and rebuilding of European fisheries. Marine Policy 93, 159–170. https://doi.org/10.1016/j.marpol.2018.04.018 (2018).
Google Scholar
Osio, G. C., Orio, A. & Millar, C. P. Assessing the vulnerability of Mediterranean demersal stocks and predicting exploitation status of un-assessed stocks. Fish. Res. 171, 110–121. https://doi.org/10.1016/j.fishres.2015.02.005 (2015).
Google Scholar
Farrugio, H., Le Corre, G. & Vaudo, G. Population dynamics of seabass, seabream and sole exploited by the French multigears demersal fishery in the Gulf of Lions (Northwestern Mediterranean). Study for Assessment and Management of Fisheries in the Western Mediterranean. EEC-FAR programme report MA (eds Farrugio, H. & Lleonart, J.), 3–621 (1994).
Tsikliras, A. C., Dinouli, A., Tsiros, V.-Z. & Tsalkou, E. The Mediterranean and Black Sea fisheries at risk from overexploitation. PloS One 10, e0121188 (2015).
Google Scholar
Hansen, L. P., Jacobsen, J. A. & Lund, R. A. The incidence of escaped farmed Atlantic salmon, Salmo salar L., in the Faroese fishery and estimates of catches of wild salmon. ICES J. Marine Sci. 56, 200–206. https://doi.org/10.1006/jmsc.1998.0437 (1999).
Google Scholar
Naylor, R. et al. Fugitive salmon: Assessing the risks of escaped fish from net-pen aquaculture. Bioscience 55, 427–437 (2005).
Google Scholar
Fiske, P., Lund, R. A. & Hansen, L. P. in Stock Identification Methods, Applications in Fishery Science. (eds Cadrin, S. X., Friedland, K. D. & Waldeman, J. R.) 659–680 (Elsevier, 2005).
Warren-Myers, F., Dempster, T., Fjelldal, P. G., Hansen, T. & Swearer, S. E. An industry-scale mass marking technique for tracing farmed fish escapees. PLoS ONE 10, e0118594 (2015).
Google Scholar
Arechavala-Lopez, P. et al. Differentiating the wild or farmed origin of Mediterranean fish: a review of tools for sea bream and sea bass. Rev. Aquac. 5, 137–157. https://doi.org/10.1111/raq.12006 (2013).
Google Scholar
Smith, A. D. & Garcia, S. M. Fishery management: Contrasts in the Mediterranean and the Atlantic. Curr. Biol. 24, R810–R812 (2014).
Google Scholar
Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318, 100–103 (2007).
Google Scholar
Araki, H. & Schmid, C. Is hatchery stocking a help or harm? Evidence, limitations and future directions in ecological and genetic surveys. Aquaculture 308, S2–S11 (2010).
Google Scholar
Baskett, M. L., Burgess, S. C. & Waples, R. S. Assessing strategies to minimize unintended fitness consequences of aquaculture on wild populations. Evolut. Appl. 6, 1090–1108 (2013).
Google Scholar
Youngson, Dosdat, Saroglia & Jordan. Genetic interactions between marine finfish species in European aquaculture and wild conspecifics. J. Appl. Ichthyol. 17, 153–162 (2001). https://doi.org/10.1046/j.1439-0426.2001.00312.x
Haffray, P. et al. European seabass – Dicentrarchus labrax. Genetics of domestication, breeding and enhancement of performance of fish and shellfish. Proceedings paper. Viterbo, Italy, 12–17th June, 2006. https://archimer.ifremer.fr/doc/00134/24535/. (2007).
Coscia, I. & Mariani, S. Phylogeography and population structure of European sea bass in the north-east Atlantic. Biol. J. Linnean Soc. 104, 364–377 (2011).
Google Scholar
Sola, L. et al. Gilthead seabream—Sparus aurata. Genetic impact of aquaculture activities on native populations, 47 (2007).
Šegvić-Bubić, T., Talijančić, I., Grubišić, L., Izquierdo-Gomez, D. & Katavić, I. Morphological and molecular differentiation of wild and farmed gilthead sea bream Sparus aurata: Implications for management. Aquac. Environ. Interact. 6, 43–54 (2014).
Google Scholar
Chavanne, H. et al. A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry. Aquac. Int. 24, 1287–1307. https://doi.org/10.1007/s10499-016-9985-0 (2016).
Google Scholar
Maroso, F. et al. Genome-wide analysis clarifies the population genetic structure of wild gilthead sea bream (Sparus aurata). PLOS ONE 16, e0236230. https://doi.org/10.1371/journal.pone.0236230 (2021).
Google Scholar
Toledo-Guedes, K., Sanchez-Jerez, P., Mora-Vidal, J., Girard, D. & Brito, A. Escaped introduced sea bass (Dicentrarchus labrax) infected by Sphaerospora testicularis (Myxozoa) reach maturity in coastal habitats off Canary Islands. Marine Ecol. 33, 26–31. https://doi.org/10.1111/j.1439-0485.2011.00470.x (2012).
Google Scholar
Luque, G. M. & Donlan, C. J. The characterization of seafood mislabeling: A global meta-analysis. Biol. Conserv. 236, 556–570. https://doi.org/10.1016/j.biocon.2019.04.006 (2019).
Google Scholar
Juan-García, A., Font, G. & Picó, Y. Simultaneous determination of different classes of antibiotics in fish and livestock by CE-MS. Electrophoresis 28, 4180–4191 (2007).
Google Scholar
Dempster, T. et al. Recapturing escaped fish from marine aquaculture is largely unsuccessful: Alternatives to reduce the number of escapees in the wild. Rev. Aquac. 10, 153–167 (2018).
Google Scholar