Siiteri, P. K. et al. The serum transport of steroid hormones. Recent Prog Horm Res 38, 457–510 (1982).

CAS 
PubMed 

Google Scholar 

Bonnet, F. et al. Sex hormone-binding globulin predicts the incidence of hyperglycemia in women: interactions with adiponectin levels. Eur J Endocrinol 161, 81–5 (2009).

Article 
CAS 
PubMed 

Google Scholar 

Ding, E. L. et al. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N Engl J Med 361, 1152–63 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Karim, R., Hodis, H. N., Stanczyk, F. Z., Lobo, R. A. & Mack, W. J. Relationship between serum levels of sex hormones and progression of subclinical atherosclerosis in postmenopausal women. J Clin Endocrinol Metab 93, 131–8 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Li, C., Ford, E. S., Li, B., Giles, W. H. & Liu, S. Association of testosterone and sex hormone-binding globulin with metabolic syndrome and insulin resistance in men. Diabetes Care 33, 1618–24 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Haffner, S. M., Katz, M. S., Stern, M. P. & Dunn, J. F. Association of decreased sex hormone binding globulin and cardiovascular risk factors. Arteriosclerosis 9, 136–43 (1989).

Article 
CAS 
PubMed 

Google Scholar 

Sutton-Tyrrell, K. et al. Sex-hormone-binding globulin and the free androgen index are related to cardiovascular risk factors in multiethnic premenopausal and perimenopausal women enrolled in the Study of Women Across the Nation (SWAN). Circulation 111, 1242–9 (2005).

Article 
CAS 
PubMed 

Google Scholar 

Janne, M. & Hammond, G. L. Hepatocyte nuclear factor-4 controls transcription from a TATA-less human sex hormone-binding globulin gene promoter. J Biol Chem 273, 34105–14 (1998).

Article 
CAS 
PubMed 

Google Scholar 

Selva, D. M. & Hammond, G. L. Peroxisome-proliferator receptor gamma represses hepatic sex hormone-binding globulin expression. Endocrinology 150, 2183–9 (2009).

Article 
CAS 
PubMed 

Google Scholar 

Alvarez-Sala Walther, L. A., Millan Nunez-Cortes, J. & de Oya Otero, M. [Mediterranean diet in Spain. Legend or reality? (I). Study of 7 countries. Various elements of the Mediterranean diet: olive oil and red wine]. Rev Clin Esp 196, 548–56 (1996).

CAS 
PubMed 

Google Scholar 

Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368, 1279–90 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Panagiotakos, D. B. et al. The association of Mediterranean diet with lower risk of acute coronary syndromes in hypertensive subjects. Int J Cardiol 82, 141–7 (2002).

Article 
PubMed 

Google Scholar 

Ros, E. et al. Mediterranean diet and cardiovascular health: Teachings of the PREDIMED study. Adv Nutr 5, 330S–6S (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tektonidis, T. G., Akesson, A., Gigante, B., Wolk, A. & Larsson, S. C. A Mediterranean diet and risk of myocardial infarction, heart failure and stroke: A population-based cohort study. Atherosclerosis 243, 93–8 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Saez-Lopez, C. et al. Oleic acid increases hepatic sex hormone binding globulin production in men. Mol Nutr Food Res 58, 760–7 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Opie, L. H. & Lecour, S. The red wine hypothesis: from concepts to protective signalling molecules. Eur Heart J 28, 1683–93 (2007).

Article 
CAS 
PubMed 

Google Scholar 

Renaud, S. & de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339, 1523–6 (1992).

Article 
CAS 
PubMed 

Google Scholar 

St Leger, A. S., Cochrane, A. L. & Moore, F. Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine. Lancet 1, 1017–20 (1979).

Article 

Google Scholar 

Tresserra-Rimbau, A. et al. Moderate red wine consumption is associated with a lower prevalence of the metabolic syndrome in the PREDIMED population. Br J Nutr 113(Suppl 2), S121–30 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Das, D. K. et al. Cardioprotection of red wine: role of polyphenolic antioxidants. Drugs Exp Clin Res 25, 115–20 (1999).

CAS 
PubMed 

Google Scholar 

Mark, L., Nikfardjam, M. S., Avar, P. & Ohmacht, R. A validated HPLC method for the quantitative analysis of trans-resveratrol and trans-piceid in Hungarian wines. J Chromatogr Sci 43, 445–9 (2005).

Article 
CAS 
PubMed 

Google Scholar 

Vinson, J. A., Teufel, K. & Wu, N. Red wine, dealcoholized red wine, and especially grape juice, inhibit atherosclerosis in a hamster model. Atherosclerosis 156, 67–72 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Gresele, P. et al. Resveratrol, at concentrations attainable with moderate wine consumption, stimulates human platelet nitric oxide production. J Nutr 138, 1602–8 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Murtaza, G. et al. Resveratrol: an active natural compounds in red wines for health. Journal of Food and Drug Analysis 21, 12 (2013).

Google Scholar 

Harikumar, K. B. & Aggarwal, B. B. Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell Cycle 7, 1020–35 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Nakata, R., Takahashi, S. & Inoue, H. Recent advances in the study on resveratrol. Biol Pharm Bull 35, 273–9 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Pervaiz, S. Resveratrol: from grapevines to mammalian biology. Faseb J 17, 1975–85 (2003).

Article 
CAS 
PubMed 

Google Scholar 

Wang, B. et al. Resveratrol prevents suppression of regulatory T-cell production, oxidative stress, and inflammation of mice prone or resistant to high-fat diet-induced obesity. Nutr Res 33, 971–81 (2013).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Alberdi, G. et al. Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet. Nutrition. 29, 562–7 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Cho, S. J., Jung, U. J. & Choi, M. S. Differential effects of low-dose resveratrol on adiposity and hepatic steatosis in diet-induced obese mice. Br J Nutr. 108, 2166–75 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Baur, J. A. & Sinclair, D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5, 493–506 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Bradamante, S., Barenghi, L. & Villa, A. Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev 22, 169–88 (2004).

Article 
CAS 
PubMed 

Google Scholar 

Wu, J. M. et al. Mechanism of cardioprotection by resveratrol, a phenolic antioxidant present in red wine (Review). Int J Mol Med 8, 3–17 (2001).

CAS 
PubMed 

Google Scholar 

Yao, R. et al. Polyphenols in alcoholic beverages activating constitutive androstane receptor CAR. Biosci Biotechnol Biochem 75, 1635–7 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Handschin, C. & Meyer, U. A. Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev 55, 649–73 (2003).

Article 
CAS 
PubMed 

Google Scholar 

Tolson, A. H. & Wang, H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev 62, 1238–49 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wortham, M., Czerwinski, M., He, L., Parkinson, A. & Wan, Y. J. Expression of constitutive androstane receptor, hepatic nuclear factor 4 alpha, and P450 oxidoreductase genes determines interindividual variability in basal expression and activity of a broad scope of xenobiotic metabolism genes in the human liver. Drug Metab Dispos 35, 1700–10 (2007).

Article 
CAS 
PubMed 

Google Scholar 

Yang, H. & Wang, H. Signaling control of the constitutive androstane receptor (CAR). Protein Cell 5, 113–23 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Honkakoski, P., Zelko, I., Sueyoshi, T. & Negishi, M. The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol Cell Biol 18, 5652–8 (1998).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wang, H. et al. A novel distal enhancer module regulated by pregnane X receptor/constitutive androstane receptor is essential for the maximal induction of CYP2B6 gene expression. J Biol Chem 278, 14146–52 (2003).

Article 
CAS 
PubMed 

Google Scholar 

Buckley, D. B. & Klaassen, C. D. Induction of mouse UDP-glucuronosyltransferase mRNA expression in liver and intestine by activators of aryl-hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, peroxisome proliferator-activated receptor alpha, and nuclear factor erythroid 2-related factor 2. Drug Metab Dispos 37, 847–56 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Osabe, M. et al. Expression of hepatic UDP-glucuronosyltransferase 1A1 and 1A6 correlated with increased expression of the nuclear constitutive androstane receptor and peroxisome proliferator-activated receptor alpha in male rats fed a high-fat and high-sucrose diet. Drug Metab Dispos 36, 294–302 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Sugatani, J. et al. Transcriptional regulation of human UGT1A1 gene expression: activated glucocorticoid receptor enhances constitutive androstane receptor/pregnane X receptor-mediated UDP-glucuronosyltransferase 1A1 regulation with glucocorticoid receptor-interacting protein 1. Mol Pharmacol 67, 845–55 (2005).

Article 
CAS 
PubMed 

Google Scholar 

Sueyoshi, T., Kawamoto, T., Zelko, I., Honkakoski, P. & Negishi, M. The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J Biol Chem 274, 6043–6 (1999).

Article 
CAS 
PubMed 

Google Scholar 

Sugatani, J. et al. The phenobarbital response enhancer module in the human bilirubin UDP-glucuronosyltransferase UGT1A1 gene and regulation by the nuclear receptor CAR. Hepatology 33, 1232–8 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Miao, J., Fang, S., Bae, Y. & Kemper, J. K. Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha. J Biol Chem 281, 14537–46 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Reschly, E. J. & Krasowski, M. D. Evolution and function of the NR1I nuclear hormone receptor subfamily (VDR, PXR, and CAR) with respect to metabolism of xenobiotics and endogenous compounds. Curr Drug Metab 7, 349–65 (2006).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Maglich, J. M. et al. Identification of a novel human constitutive androstane receptor (CAR) agonist and its use in the identification of CAR target genes. J Biol Chem 278, 17277–83 (2003).

Article 
CAS 
PubMed 

Google Scholar 

Moore, L. B. et al. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J Biol Chem 275, 15122–7 (2000).

Article 
CAS 
PubMed 

Google Scholar 

Tzameli, I., Pissios, P., Schuetz, E. G. & Moore, D. D. The xenobiotic compound 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene is an agonist ligand for the nuclear receptor CAR. Mol Cell Biol 20, 2951–8 (2000).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kolouchová-Hanzlíková, I., Melzoch, K., Filip, V. & Smidrkal, J. Rapid method for resveratrol determination by HPLC with electrochemical and UV detections in wines. Food Chemistry 87, 151–158 (2004).

Article 

Google Scholar 

Berardi, V., Ricci, F., Castelli, M., Galati, G. & Risuleo, G. Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: potential clinical use. J Exp Clin Cancer Res 28, 96 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ding, X. Z. & Adrian, T. E. Resveratrol inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Pancreas 25(4), e71–6 (2002).

Article 
PubMed 

Google Scholar 

Ahn, J., Cho, I., Kim, S., Kwon, D. & Ha, T. Dietary resveratrol alters lipid metabolism-related gene expression of mice on an atherogenic diet. J Hepatol 49, 1019–28 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Maier-Salamon, A., Bohmdorfer, M., Thalhammer, T., Szekeres, T. & Jaeger, W. Hepatic glucuronidation of resveratrol: interspecies comparison of enzyme kinetic profiles in human, mouse, rat, and dog. Drug Metab Pharmacokinet 26, 364–73 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Rice-Evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M. & Pridham, J. B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res. 22(4), 375–83 (1995).

Article 
CAS 
PubMed 

Google Scholar 

German, J. B. & Walzem, R. L. The health benefits of wine. Annu Rev Nutr. 20, 561–93 (2000).

Article 
CAS 
PubMed 

Google Scholar 

Szewczuk, L. M., Forti, L. & Stivala, L. A. et al. Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2: a mechanistic approach to the design of COX-1 selective agents. J Biol Chem. 279, 22727–37 (2004).

Article 
CAS 
PubMed 

Google Scholar 

Sevov, M., Elfineh, L. & Cavelier, L. B. Resveratrol regulates the expression of LXR-alpha in human macrophages. Biochem Biophys Res Commun. 348, 1047–54 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Jiang, H. et al. Combination treatment with resveratrol and sulforaphane induces apoptosis in human U251 glioma cells. Neurochem Res. 35(1), 152–61 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Tian, Y. et al. Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver. Mol Cell Biochem. 422(1–2), 75–84 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Shufelt, C. et al. Red versus white wine as a nutritional aromatase inhibitor in premenopausal women: a pilot study. J Womens Health (Larchmt) 21, 281–4 (2012).

Article 

Google Scholar 

Chow, H. H. et al. A pilot clinical study of resveratrol in postmenopausal women withhigh body mass index: effects on systemic sex steroid hormones. J Transl Med 12, 223 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Selva, D. M., Hogeveen, K. N., Innis, S. M. & Hammond, G. L. Monosaccharide-induced lipogenesis regulates the human hepatic sex hormone-binding globulin gene. J Clin Invest. 117(12), 3979–87 (2007).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Hammond, G. L., Hogeveen, K. N., Visser, M. & Coelingh Bennink, H. J. Estetrol does not bind sex hormone binding globulin or increase its production by human HepG2 cells. Climacteric 11(suppl 1), 41–46 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Selva, D. M. & Hammond, G. L. Thyroid hormones act indirectly to increase sex hormone-binding globulin production by liver via hepatocyte nuclear factor-4alpha. J Mol Endocrinol 43, 19–27 (2009).

Article 
CAS 
PubMed 

Google Scholar 

Wallace, B.D., Redinbo, M.R. Xenobiotic-sensing nuclear receptors involved in drug metabolism: a structural perspective. Drug Metab Rev. Feb;45(1):79–100 (2013).

Laaksonen, D. E. et al. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care. 27(5), 1036–1041 (2004).

Article 
CAS 
PubMed 

Google Scholar 

Bhasin, S. et al. Sex hormone-binding globulin, but not testosterone, is associated prospectively and independently with incident metabolic syndrome in men: the framingham heart study. Diabetes Care. 34(11), 2464–2470 (2011).

Article 
MathSciNet 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Haffner, S. M., Valdez, R. A., Morales, P. A., Hazuda, H. P. & Stern, M. P. Decreased sex hormone-binding globulin predicts noninsulin-dependent diabetes mellitus in women but not in men. J Clin Endocrinol Metab. 77(1), 56–60 (1993).

CAS 
PubMed 

Google Scholar 

Lindstedt, G. et al. Low sex-hormone-binding globulin concentration as independent risk factor for development of NIDDM. 12-yr follow-up of population study of women in Gothenburg, Sweden. Diabetes. 40(1), 123–128 (1991).

Article 
CAS 
PubMed 

Google Scholar 

Janne, M., Deol, H. K., Power, S. G., Yee, S. P. & Hammond, G. L. Human sex hormone-binding globulin gene expression in transgenic mice. Mol Endocrinol 12, 123–36 (1998).

Article 
CAS 
PubMed 

Google Scholar 

Scheer, N. et al. A novel panel of mouse models to evaluate the role of human pregnane X receptor and constitutive androstane receptor in drug response. J Clin Invest. 118(9), 3228–39 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Write A Comment