Vossen, P. Olive oil: history, production, and characteristics of the world’s classic oils. HortScience 42, 1093–1100 (2007).
Kaniewski, D. et al. Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidences from the Middle East. Biol. Rev. 87, 885–899 (2012).
Uylaşer, V. & Yildiz, G. The historical development and nutritional importance of olive and olive oil constituted an important part of the Mediterranean diet. Crit. Rev. Food Sci. Nutr. 54, 1092–1101 (2014).
Mallamaci, R. et al. Olive tree in circular economy as a source of secondary metabolites active for human and animal health beyond oxidative stress and inflammation. Molecules 26, 1072 (2021).
Google Scholar
Statistics (International Olive Oil Council; 2024). https://www.internationaloliveoil.org/.
Marché de l’huile d’olive: Monde, Europe, France (FranceAgriMer, 2022). https://www.franceagrimer.fr/content/download/69135/document/20020630_MARCHE_HUILE_OLIVE_2020_2021.pdf.
Uzundumlu, A. S. & Ateş, T. Investigation of olive production in a ten-year period in 1961-2021. Turk. J. Agric. Nat. Sci. 11, 330–341 (2024).
Ben Zaied, Y. & Zouabi, O. Impacts of climate change on Tunisian olive oil output. Clim. Change 139, 535–549 (2016).
Ozdemir, Y. Effects of climate change on olive cultivation and table olive and olive oil quality. Sci. Pap. Ser. B Hortic. 60, 65–69 (2016).
Brito, C., Dinis, L. T., Moutinho-Pereira, J. & Correia, C. M. Drought stress effects and olive tree acclimation under a changing climate. Plants 8, 232 (2019).
Google Scholar
Fraga, H., Moriondo, M., Leolini, L. & Santos, J. A. Mediterranean olive orchards under climate change: a review of future impacts and adaptation strategies. Agronomy 11, 56 (2021).
Rapa, M. & Ciano, S. A review on life cycle assessment of the olive oil production. Sustainability 14, 654 (2022).
Picornell, A., Abreu, I. & Ribeiro, H. Trends and future projections of Olea flowering in the western Mediterranean. Agric. Meteorol. 339, 109559 (2023).
Olive Oil Production by Country 2024 (World Population Review; 2024). https://worldpopulationreview.com/country-rankings/olive-oil-production-by-country.
Santos, J. A., Costa, R. & Fraga, H. Climate change impacts on thermal growing conditions of main fruit species in Portugal. Clim. Change 140, 273–286 (2017).
Orlandi, F. et al. Impact of climate change on olive crop production in Italy. Atmosphere 11, 595 (2020).
Rodríguez Sousa, A. A., Barandica, J. M., Aguilera, P. A. & Rescia, A. J. Examining potential environmental consequences of climate change and other driving forces on the sustainability of Spanish olive groves under a socio-ecological approach. Agriculture 10, 509 (2020).
Zaied, Y. B. & Zouabi, O. Impacts of climate change on Tunisian olive oil output. Clim. Change 139, 535–549 (2016).
Ramos-Román, M. J. et al. Climate controlled historic olive tree occurrences and olive oil production in southern Spain. Glob. Planet. Change 182, 102996 (2019).
Kaniewski, D. et al. Climate change threatens olive-oil production in the Levant. Nat. Plants 9, 219–227 (2023).
Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D. & Saldarelli, P. Xylella fastidiosa in olive in Apulia: where we stand. Phytopathology 109, 175–186 (2019).
Google Scholar
Guo, Y. The fate of European olives. Nat. Food 1, 255 (2020).
Sicard, A. et al. Introduction and adaptation of an emerging pathogen to olive trees in Italy. Microb. Genom. 7, 000735 (2021).
Google Scholar
Brunetti, A. et al. Neofusicoccum mediterraneum is involved in a twig and branch dieback of olive trees observed in Salento (Apulia, Italy). Pathogens 11, 53 (2022).
Google Scholar
Viola, F., Caracciolo, D., Pumo, D. & Noto, L. V. Olive yield and future climate forcings. Procedia Environ. Sci. 19, 132–138 (2013).
Arenas-Castro, S., Gonçalves, J. F., Moreno, M. & Villar, R. Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Sci. Total Environ. 709, 136161 (2020).
Google Scholar
Sanz-Cortès, F. et al. Phenological growth stages of olive tree (Olea europaea). Ann. Appl. Biol. 140, 151–157 (2002).
Avolio, E., Orlandi, F., Bellecci, C., Fornaciari, M. & Federico, S. Assessment of the impact of climate change on the olive flowering in Calabria (southern Italy). Theor. Appl. Climatol. 107, 531–540 (2012).
Gucci, R. et al. Changes of soil properties and tree performance induced by soil management in a high-density olive orchard. Eur. J. Agron. 41, 18–27 (2012).
Orlandi, F. et al. Climatic indices in the interpretation of the phenological phases of the olive in Mediterranean areas during its biological cycle. Clim. Change 116, 263–284 (2013).
Angelopoulos, K., Dichio, B. & Xiloyannis, C. Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering. J. Exp. Bot. 47, 1093–1100 (1996).
Google Scholar
Todaro, V. et al. Climate change over the Mediterranean region: local temperature and precipitation variations at five pilot sites. Water 14, 2499 (2022).
Viola, F., Daly, E., Vico, G., Cannarozzo, M. & Porporato, A. Transient soil-moisture dynamics and climate change in Mediterranean ecosystems. Water Resour. Res. 44, W11412 (2008).
Pumo, D., Viola, F. & Noto, L. V. Climate changes’ effects on vegetation water stress in Mediterranean areas. Ecohydrology 3, 166–176 (2010).
Sofo, A., Dichio, B., Lontanaro, G. & Xiloyannis, C. Photosynthetic performance and light response of two olive cultivars under different water and light regimes. Photosynthetica 47, 602–608 (2009).
Google Scholar
Villalobos, F. J., Testi, L., Hidalgo, J., Pastor, M. & Orgaz, F. Modelling potential growth and yield of olive (Olea europea L.) canopies. Eur. J. Agron. 24, 296–303 (2006).
Gregoriou, K., Pontikis, K. & Vemmos, S. Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea L.). Photosynthetica 45, 172–181 (2007).
Cherbiy-Hoffmann, S. U., Hall, A. J. & Rousseaux, M. C. Fruit, yield, and vegetative growth responses to photosynthetically active radiation during oil synthesis in olive trees. Sci. Hortic. 150, 110–116 (2013).
Ladux, F. J., Trentacoste, E. R., Searles, P. S. & Rousseaux, M. C. Light quality environment and photomorphological responses of young olive trees. Horticulturae 7, 369 (2021).
Proietti, P. et al. Influence of light availability on fruit and oil characteristics in Olea europaea L. Acta Hortic. 949, 243–250 (2012).
Kaniewski, D. et al. Holocene palaeoecological archives of Eastern Mediterranean plant diversity: past, present and future trends. Anthropocene 45, 100430 (2024).
Haworth, M. et al. The impact of heat stress and water deficit on the photosynthetic and stomatal physiology of olive (Olea europaea L.) – a case study of the 2017 heatwave. Plants 7, 76 (2018).
Google Scholar
Griffin, K. L. & Seemann, J. R. Plants, CO2, and photosynthesis in the 21st century. Chem. Biol. 3, 245–254 (1996).
Google Scholar
Engels, S. & van Geel, B. The effects of changing solar activity on climate: contributions from palaeoclimatological studies. J. Space Weather Space Clim. 2, A09 (2012).
Ventre-Lespiaucq, A. B. et al. Field patterns of temporal variations in the light environment within the crowns of a Mediterranean evergreen tree (Olea europaea). Trees 30, 995–1009 (2016).
Ineson, S. et al. Regional climate impacts of a possible future grand solar minimum. Nat. Commun. 6, 7535 (2015).
Google Scholar
Maycock, A. C. et al. Possible impacts of a future grand solar minimum on climate: stratospheric and global circulation changes. J. Geophys. Res. Atmos. 120, 9043–9058 (2015).
Google Scholar
Polade, S. D., Gershunov, A., Cayan, D. R., Dettinger, M. D. & Pierce, D. W. Precipitation in a warming world: assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep. 7, 10783 (2017).
Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).
Fornaciari, M., Pieroni, L., Orlandi, F. & Romano, B. A new approach to consider the pollen variable in forecasting yield models. Econ. Bot. 56, 66–72 (2002).
Orlandi, F., Romano, B. & Fornaciari, M. Relationship between pollen emission and fruit production in olive (Olea europaea L.). Grana 44, 98–103 (2005).
Usoskin, I. G., Gallet, G. Y., Lopes, F., Kovaltsov, G. A. & Hulot, G. Solar activity during the Holocene: the Hallstatt Cycle and its consequence for Grand Minima and Maxima. AA 587, A150 (2016).
Scafetta, N. Solar oscillations and the orbital invariant inequalities of the solar system. Sol. Phys. 295, 33 (2020).
Steinhilber, F. et al. 9400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. USA 109, 5967–5971 (2012).
Google Scholar
Solanski, S. K., Usoskin, I. G., Kromer, B., Schüssler, M. & Beer, J. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084–1087 (2005).
Vonmoos, M., Beer, J. & Muscheler, R. Large variations in Holocene solar activity: Constraints from 10Be in the Greenland Ice Core Project ice core. J. Geophys. Res. 111, A10105 (2006).
Evans, J. R. Improving photosynthesis. Plant Physiol. 162, 1780–1793 (2013).
Google Scholar
Lémole, G., Weibel, A. & Trentacoste, E. R. Effect of shading in different periods from flowering to maturity on the fatty acid and phenolic composition of olive oil (cv. Arbequina). Sci. Hortic. 240, 162–169 (2018).
Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. AA 428, 261–285 (2004).
Hernandez-Santana, V., Fernández, J. E., Cuevas, M. V., Perez-Martin, A. & Diaz-Espejo, A. Photosynthetic limitations by water deficit: Effect on fruit and olive oil yield, leaf area and trunk diameter and its potential use to control vegetative growth of super-high-density olive orchards. Agric. Water Manag. 184, 9–18 (2017).
Langgut, D. et al. The origin and spread of olive cultivation in the Mediterranean Basin: The fossil pollen evidence. Holocene 29, 902–922 (2019).
Zohary, D. & Hopf, M. Domestication of plants in the Old World. (Clarendon Press, 2000).
Bourke, S., Zoppi, U., Meadows, J., Hua, Q. & Gibbins, S. The end of the Chalcolithic period in the south Jordan valley: new 14C determinations from Teleilat Ghassul, Jordan. Radiocarbon 46, 315–323 (2004).
Google Scholar
Lovell, J. L., Meadows, J. & Jacobsen, G. E. Upland olive domestication in the Chalcolithic period: new 14C determinations from El-Khawarij (Ajlun), Jordan. Radiocarbon 52, 364–371 (2010).
Zohary, M. Plants of the Bible. (Cambridge University Press, 1982).
Mazar, A., Bruins, H. J., Panitz-Cohen, N. & Van Der Plicht, J. Ladder of time at Tel Rehov: stratigraphy, archaeological context, pottery and radiocarbon dates in The Bible and radiocarbon dating: archaeology, text and science (eds Levy T. E. & Higham T.), 193-255 (Equinox, 2005).
Sharon, I., Gilboa, A., Jull, T. & Boaretto, E. Report on the first stage of the Iron Age dating project in Israel: supporting the low chronology. Radiocarbon 49, 1–46 (2007).
Google Scholar
Frankel, R. Presses for oil and wine in the southern Levant in the Byzantine period. DOP 51, 73–84 (1997).
Yasuda, Y. The rise and fall of olive cultivation in northwest Syria: palaeoecological study of Tell Mastuma. Jpn. Rev. 8, 251–273 (1997).
Barker, G. A tale of two deserts: contrasting desertification histories on Rome’s desert frontiers. World Archaeol. 33, 488–507 (2002).
Izdebski, A. et al. On the use of palynological data in economic history: new methods and an application to agricultural output in Central Europe, 0-2000 AD. Explor. Econ. Hist. 59, 17–39 (2016).
Izdebski, A. et al. Landscape change and trade in ancient Greece: evidence from pollen data. Econ. J. 130, 2596–2618 (2020).
Izdebski, A. et al. Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic. Nat. Ecol. Evol. 6, 297–306 (2022).
Google Scholar
Li, F. et al. Global water use efficiency saturation due to increased vapor pressure deficit. Science 381, 672–677 (2023).
Google Scholar
Zharkova, V. Modern Grand Solar Minimum will lead to terrestrial cooling. Temperature 7, 217–222 (2020).
Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D. & Waple, A. Solar forcing of regional climate change during the Maunder minimum. Science 294, 2149–2152 (2001).
Google Scholar
Fitter, A. H. & Hay, R. K. M. Environmental physiology of plants, third ed. (Academic Press-London, 2002).
Kasatkina, E. A., Shumilov, O. I. & Timonen, M. Solar activity imprints in tree ring-data from northwestern Russia. J. Atmos. Sol. Terr. Phys. 193, 105075 (2019).
Mufti, S. & Shah, G. N. Solar-geomagnetic activity influence on Earth’s climate. J. Atmos. Sol. Terr. Phys. 73, 1607–1615 (2011).
Svensmark, H. Cosmoclimatology: a new theory emerges. Astron. Geosci. 48, 18–24 (2007).
Kirkby, J. Cosmic rays and climate. Surv. Geophys. 28, 333–375 (2007).
Harrison, R. G. & Carslaw, K. S. Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 41, 1012 (2003).
Tramblay, Y. et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth Sci. Rev. 210, 103348 (2020).
Hochman, A., Scher, S., Quiting, J., Pinto, J. G. & Messori, G. A new view of heat wave dynamics and predictability over the eastern Mediterranean. Earth Syst. Dyn. 12, 133–149 (2021).
Chartzoulakis, K. & Psarras, G. Global change effects on crop photosynthesis and production in Mediterranean: The case of Crete, Greece. Agric. Ecosyst. Environ. 106, 147–157 (2005).
Google Scholar
Zargar, S. M. et al. Impact of drought on photosynthesis: molecular perspective. Plant Gene 11, 154–159 (2017).
Google Scholar
Trabelsi, L. et al. Impact of drought and salinity on olive water status and physiological performance in an arid climate. Agric. Water Manag. 213, 749–759 (2019).
Loumou, A. & Giourga, C. Olive groves: the life and identity of the Mediterranean. Agric. Hum. Values 20, 87–95 (2003).
Bernardi, B. et al. Harvesting system sustainability in Mediterranean olive cultivation. Sci. Total Environ. 625, 1446–1458 (2018).
Google Scholar
Avramidou, E. V. et al. Olive, a monumental tree; multidimensional perspective from origin to sustainability in Economically important trees: origin, evolution, genetic diversity and ecology. Sustainable development and biodiversity (eds Uthup, T. K. & Karumamkandathil, R.), 51–80 (Springer, 2024).
Zipori, I., Erel, R., Yermiyahu, U., Ben-Gal, A. & Dag, A. Sustainable management of olive orchard nutrition: a review. Agriculture 10, 11 (2020).
Google Scholar
Jordán, A., Zavala, L. M. & Gil, J. Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena 81, 77–85 (2010).
Rawat, J., Saxena, J. & Sanwal, P. Biochar: a sustainable approach for improving plant growth and soil properties in Biochar—an imperative amendment for soil and the environment (eds Abrol, V. & Sharmas, P.) 82151 (IntechOpen: Rijeka, 2019).
Regni, L. et al. Reuse of Olive Mill Waste As Soil Amendment. (Academic Press, Cambridge, MA, USA, 2017).
Sharma, V., Javed, B., Byrne, H., Curtin, J. & Tian, F. Zeolites as carriers of nano-fertilizers: from structures and principles to prospects and challenges. Appl. Nano Mater. 3, 163–186 (2022).
Ziskin, R., Dag, A., Yermiyahu, U. & Levy, G. J. Different amendments for combating soil sodicity in an olive orchard. Agric. Water Manag. 299, 108837 (2024).
Martins, S., Pereira, S., Dinis, L. T. & Brito, C. Enhancing olive cultivation resilience: sustainable long-term and short-term adaptation strategies to alleviate climate change impacts. Horticulturae 10, 1066 (2024).
Lavee, S., Avidan, B., Meni, Y., Kaskal, A. & Wodner, M. Three new semi-dwarf varieties of olive tree for table use. Olivae 102, 33–41 (2004).
Fraga, H., Pinto, J. G. & Santos, J. A. Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal. Agric. Water Manag. 237, 106193 (2020).
Tanasijevic, L., Todorovic, M., Pereira, L. S., Pizzigalli, C. & Lionello, P. Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agric. Water Manag. 144, 54–68 (2014).
Fereres, E. & Soriano, M. A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 58, 147–159 (2006).
Michalopoulos, G. et al. Adaptation of Mediterranean olive groves to climate change through sustainable cultivation practices. Climate 8, 54 (2020).
Kaniewski, D. et al. A high-resolution Late Holocene landscape ecological history inferred from an intramontane basin in the Western Taurus Mountains, Turkey. Quat. Sci. Rev. 26, 2201–2218 (2007).
Kaniewski, D. et al. Climate change and social unrest: a 6,000-year chronicle from the Eastern Mediterranean. Geophys. Res. Lett. 47, e2020GL087496 (2020).
Kaniewski, D. et al. Middle East coastal ecosystem response to middle-to-late Holocene abrupt climate changes. Proc. Natl. Acad. Sci. USA 105, 13941–13946 (2008).
Google Scholar
Kaniewski, D. et al. The Medieval Climate Anomaly and the Little Ice Age in coastal Syria inferred from pollen-derived palaeo-climatic patterns. Glob. Planet. Change 78, 178–187 (2011).
Kaniewski, D., Van Campo, E. & Weiss, H. Drought is a recurring challenge in the Middle East. Proc. Natl Acad. Sci. USA 109, 3862–3867 (2012).
Google Scholar
Kaniewski, D. et al. Climate change and water management in the biblical city of Dan. Sci. Adv. 3, e1700954 (2017).
Kaniewski, D. et al. Early urban impact on Mediterranean coastal environments. Sci. Rep. 3, 354 (2013).
Kaniewski, D. et al. Wild or cultivated Olea europaea L. in the eastern Mediterranean during the middle-late Holocene? A pollen-numerical approach. Holocene 19, 1039–1047 (2009).
Florenzano, A. et al. The Representativeness of Olea pollen from olive groves and the late Holocene landscape reconstruction in Central Mediterranean. Front. Earth Sci. 5, 85 (2017).
Julca, I., Vargas, P. & Gabaldón, T. Phylogenomics of the Olea europaea complex using 15 whole genomes supports recurrent genetic admixture together with differentiation into seven subspecies. BMC Biol. 21, 85 (2023).
Google Scholar
Rojas-Gómez, M. et al. Pollen production in olive cultivars and its interannual variability. Ann. Bot. 132, 1145–1158 (2023).
Matthias, I. & Giesecke, T. Insights into pollen source area, transport and deposition from modern pollen accumulation rates in lake sediments. Quat. Sci. Rev. 87, 12–23 (2014).
Cheddadi, R. et al. Microrefugia, climate change, and conservation of Cedrus atlantica in the Rif Mountains, Morocco. Front. Ecol. Evol. 5, 114 (2017).
