Schwingshackl, L., Heseker, H., Kiesswetter, E. & Koletzko, B. Dietary fat and fatty foods in the prevention of non-communicable diseases: A review of the evidence. Trends Food Sci. Technol. 128, 173–184 (2022).

CAS 

Google Scholar 

Nettleton, J., Brouwer, A., Geleijnse, J. & Hornstra, G. Saturated fat consumption and risk of coronary heart disease and ischemic stroke: a science update. Ann. Nutr. Metab. 70, 26–33 (2017).

CAS 
PubMed 

Google Scholar 

Cao, X. et al. The effect of MUFA-Rich food on lipid profile: A meta-analysis of randomized and controlled-feeding trials. Foods 11, 1982. https://doi.org/10.3390/foods1113198 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Law, M. Dietary fat and adult diseases and the implications for childhood nutrition: an epidemiologic approach. Am. J. Clin. Nutr. 72 (Suppl), 1291S–1296S (2000).

CAS 
PubMed 

Google Scholar 

Nestel, P. & Mori, T. Dairy foods: is its cardiovascular risk profile changing? Curr. Atheroscler Rep. 24, 33–40 (2022).

PubMed 

Google Scholar 

Allman-Farinelli, M. et al. A diet rich in high-oleic-acid sunflower oil favorably alters low-density lipoprotein cholesterol, triglycerides, and factor VII coagulant activity. J. Am. Diet. Assoc. 105, 1071–1079 (2005).

CAS 
PubMed 

Google Scholar 

Temme, E., Mensink, R. & Hornstra, G. Comparison of the effects of diets enriched in lauric, palmitic or oleic acids on plasma lipids and lipoproteins in healthy women and men. Am. J. Clin. Nutr. 63, 897–903 (1996).

CAS 
PubMed 

Google Scholar 

Kromhout, D. et al. Comparative ecologic relationships of saturated fat, sucrose, food groups, and a mediterranean food pattern score to 50-year coronary heart disease mortality rates among 16 cohorts of the seven countries study. Eur. J. Clin. Nutr. 72, 1103–1110 (2018).

CAS 
PubMed 

Google Scholar 

Kumar, M., Sambaiah, K. & Lokesh, B. Hypocholesterolemic effect of anhydrous milk fat ghee is mediated by increasing the secretion of biliary lipids. J. Nutr. Biochem. 11, 69–75 (2000).

CAS 
PubMed 

Google Scholar 

Zommara, M. Hypocholesterolemic effect of milk fat and Olive oil in C57BL/6 N mice fed an atherogenic diet. J. Agric. Res. Mansoura Univ. 27, 3995–4004 (2002).

Google Scholar 

Sharma, H., Zhang, X. & Dwivedi, C. The effect of ghee (clarified butter) on plasma lipid levels and microsomal lipid peroxidation. AYU. 31, 134–140 (2010).

PubMed 
PubMed Central 

Google Scholar 

Fontecha, J. et al. Milk and dairy product consumption and cardiovascular diseases: an overview of systematic reviews and meta-analyses. Adv. Nutr. 10 (Suppl 2), S164–S189 (2019).

PubMed 
PubMed Central 

Google Scholar 

Gisterå, A., Ketelhuth, D., Malin, S. & Hansson, G. Animal models of atherosclerosis-supportive notes and tricks of the trade. Circ. Res. 130, 1869–1887 (2022).

PubMed 

Google Scholar 

Perdomo, L. et al. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc. Diabetol. 14, 75. https://doi.org/10.1186/s12933-015-0237-9 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Lu, Y. et al. Protective effects of oleic acid and polyphenols in extra virgin olive oil on cardiovascular diseases. Food Sci. Hum. Well. 13, 529–540 (2024).

CAS 

Google Scholar 

Harvatine, K., Dale, E. & Mark, A. Mammary gland, milk biosynthesis and secretion: milk fat in Encyclopedia of dairy sciences (ed. McSweeney, P., McNamara, J.) 190–197. (Academic Press, 2022).

Rodríguez-Alcalá, L. et al. Milk fat components with potential anticancer activity-a review. Biosci. Rep. 37, BSR20170705. https://doi.org/10.1042/BSR20170705 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Abdelhalim, K. Short-chain fatty acids (SCFAs) from gastrointestinal disorders, metabolism, epigenetics, central nervous system to cancer – A mini-review. Chem. Biol. Interact. 388, 110851. https://doi.org/10.1016/j.cbi.2023.110851 (2024).

CAS 
PubMed 

Google Scholar 

Mathiasen, S. et al. Novel methodology to enrich medium- and short-chain fatty acids in milk fat to improve metabolic health. Food Funct. 15, 7951–7960 (2024).

Google Scholar 

Nicolosi, R. et al. Decreased aortic early atherosclerosis in hypercholesterolemic hamsters fed oleic acid-rich TriSun oil compared to linoleic acid-rich sunflower oil. J. Nutr. Biochem. 13, 392–402 (2002).

CAS 
PubMed 

Google Scholar 

Starčević, K. et al. Growth performance, plasma lipids and fatty acid profile of different tissues in chicken broilers fed a diet supplemented with linseed oil during a prolonged fattening period. Veterinarski Arhiv. 84, 75–84 (2014).

Google Scholar 

Starčević, K. et al. Production performance, meat composition and oxidative susceptibility in broiler chicken fed with different phenolic compounds. J. Sci. Food Agric. 95, 1172–1178 (2015).

PubMed 

Google Scholar 

Peña-Saldarriaga, L., Pérez-Alvarez, J. & Fernández-López, J. Quality properties of chicken emulsion-type sausages formulated with chicken fatty byproducts. Foods 9, 507. https://doi.org/10.3390/foods9040507 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Lin, L. & &Tan, F. Influence of rendering methods on yield and quality of chicken fat recovered from broiler skin. Asian-Australaian J. Anim. Sci. 30, 872–877 (2017).

CAS 

Google Scholar 

Kochhar, P. Thermal stability of fats for high temperature applications in Functional dietary lipids (ed. Sanders, T.) 103–148. https://doi.org/10.1016/B978-1-78242-247-1.00005-3 (Woodhead Publishing, 2016).

Liu, M., Wang, D., Black, D. & Tso, P. Differential effect of four-week feeding of different dietary fats on the accumulation of fat and the cholesterol and triglyceride contents in the different fat depots. Nutrients 12, 123241. https://doi.org/10.3390/nu12113241 (2020).

CAS 

Google Scholar 

Limmatvapirat, C. et al. Beef tallow: extraction, physicochemical property, fatty acid composition, antioxidant activity, and formulation of lotion bars. J. Appl. Pharm. Sci. 11, 18–28 (2021).

CAS 

Google Scholar 

Nogoy, K. et al. Fatty acid composition of grain- and grass-fed beef and their nutritional value and health implication. Food Sci. Anim. Resour. 42, 18–33 (2022).

PubMed 
PubMed Central 

Google Scholar 

Ruuth, M. et al. Overfeeding saturated fat increases LDL (low-density lipoprotein) aggregation susceptibility while overfeeding unsaturated fat decreases proteoglycan-binding of lipoproteins. Arterioscler. Thromb. Vasc. Biol. 41, 2823–2836 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Gouvinhas, I. et al. Critical review on the significance of olive phytochemicals in plant physiology and human health. Molecules 22, 1986. https://doi.org/10.3390/molecules22111986 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Bucciantini, M. et al. Olive polyphenols: antioxidant and anti-inflammatory properties. Antioxidants 10, 1044. https://doi.org/10.3390/antiox10071044 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Nedkoff, L. et al. Global trends in atherosclerotic cardiovascular disease. Clin. Ther. 45, 1087–1091 (2023).

PubMed 

Google Scholar 

Milena, E. & Maurizio, M. Exploring the cardiovascular benefits of extra virgin olive oil: insights into mechanisms and therapeutic potential. Biomolecules 15, 284. https://doi.org/10.3390/biom15020284 (2025).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Xia, M., Zhong, Y., Peng, Y. & Qian, C. Olive oil consumption and risk of cardiovascular disease and all-cause mortality: A meta-analysis of prospective cohort studies. Front. Nutr. 18, 1041203. https://doi.org/10.3389/fnut.2022.1041203 (2022).

Google Scholar 

Schwingshackl, L. et al. Olive oil in the prevention and management of type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies and intervention trials. Nutr. Diabetes. 10, e262. https://doi.org/10.1038/nutd.2017.12 (2017).

CAS 

Google Scholar 

Mazzocchi, A., Leone, L., Agostoni, C. & Pali-Schöll, I. The secrets of the Mediterranean diet. does [only] olive oil matter?. Nutrients 11, 2941. https://doi.org/10.3390/nu11122941 (2019).

PubMed 
PubMed Central 

Google Scholar 

Borghjid, S. & Feinman, R. D. Response of C57Bl/6 mice to a carbohydrate-free diet. Nutr. Metab. 9, 69. https://doi.org/10.1186/1743-7075-9-69 (2012).

CAS 

Google Scholar 

Song, H. K. & Hwang, D. Y. Use of C57BL/6 N mice on the variety of immunological researches. Lab. Anim. Res. 33, 119–123. https://doi.org/10.5625/lar.2017.33.2.119 (2017).

PubMed 
PubMed Central 

Google Scholar 

Thiex, N., Anderson, S. & Gildemeister, B. Crude fat, hexanes extraction, in feed, cereal grain, and forage (Randall/Soxtec/submersion method): collaborative study. J. AOAC Int. 86, 899–908 (2003).

CAS 
PubMed 

Google Scholar 

Abou-Donia, S. Origin, history and manufacturing process of Egyptian dairy products: an overview. Alex. J. Food Sci. Technol. 5, 51–62 (2008).

Google Scholar 

Reeves, P., Nielsen, F. & Fahey, C. AIN-93G purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939–1951 (1993).

CAS 
PubMed 

Google Scholar 

Ishinaga, M., Sugiyama, S. & Mochizuki, T. Daily intakes of fatty acids, sterols, and phospholipids by Japanese women and serum cholesterol. J. Nutr. Sci. Vitaminol. 40, 557–567 (1994).

CAS 
PubMed 

Google Scholar 

Ikeda, I. et al. α-Linolenic, eicosapentaenoic and docosahexaenoic acids affect lipid metabo-lism differently in rats. J. Nutr. 124, 1898–1906 (1994).

CAS 
PubMed 

Google Scholar 

Du, C. et al. Cholesterol synthesis in mice suppressed but Lipofuscin formation is not affected by long-term feeding of n-3fatty acid-enriched oils compared with lard and n-6 fatty acid-enriched oils. Biol. Pharm. Bull. 26, 766–770 (2003).

CAS 
PubMed 

Google Scholar 

Bligh, E. & Dyer, W. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

CAS 
PubMed 

Google Scholar 

Sperry, W. M. & Weeb, M. A revision of the Schoenheimer-Sperry method for cholesterol determination. J. Biol. Chem. 187, 97–106 (1950).

CAS 
PubMed 

Google Scholar 

Fletcher, M. A colorimetric method for Estimation of plasma triglycerides. Clin. Chim. Acta. 22, 393–397 (1968).

CAS 
PubMed 

Google Scholar 

Bartlett, G. Phosphorus assay in column chromatography. J. Biol. Chem. 234, 466–468 (1959).

CAS 
PubMed 

Google Scholar 

Kannan, S. et al. LDL-cholesterol: Friedewald calculated versus direct measurement-study from a large Indian laboratory database. Indian J. Endocrinol. Metab. 18, 502–504 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Dobiasova, M. AIP-Atherogenic index of plasma as a significant predictor of cardiovascular risk: from research to practice. Vnitr. Lek. 52, 64–71 (2006).

CAS 
PubMed 

Google Scholar 

Yin, B. et al. Non-linear association of atherogenic index of plasma with insulin resistance and type 2 diabetes: a cross-sectional study. Cardiovasc. Diabetol. 22, 157. https://doi.org/10.1186/s12933-023-01886-5 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Bittner, V. et al. The triglyceride/high-density lipoprotein cholesterol ratio predicts all-cause mortality in women with suspected myocardial ischemia: a report from the women’s ischemia syndrome evaluation (WISE). Am. Heart J. 157, 548–555 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Sun, T. et al. Predictive value of LDL/HDL ratio in coronary atherosclerotic heart disease. BMC Cardiovasc. Disord. 22, 273. https://doi.org/10.1186/s12872-022-02706-6 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Calling, S. et al. The ratio of total cholesterol to high density lipoprotein cholesterol and myocardial infarction in women’s health in the Lund area (WHILA): a 17-year follow-up cohort study. BMC Cardiovasc. Disord. 19, 239. https://doi.org/10.1186/s12872-019-1228-7 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhou, D. et al. The effect of total cholesterol/high-density lipoprotein cholesterol ratio on mortality risk in the general population. Front. Endocrinol. 15, 1012383. https://doi.org/10.3389/fendo.2022.1012383 (2022).

Google Scholar 

Paigen, B. et al. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 68, 231–240 (1987).

CAS 
PubMed 

Google Scholar 

Ni, W., Tsuda, Y., Sakono, M. & Imaizumi, K. Dietary soy protein isolate, compared with casein, reduces atherosclerosis lesion area in Apolipoprotein E-deficient mice. J. Nutr. 128, 1884–1889 (1998).

CAS 
PubMed 

Google Scholar 

SPSS. SPSS for windows. Statistical package for social studies 567 Software; Version 24; (Ibm Corp., 2016).

Hoffmann, H. M. Determination of reproductive competence by confirming pubertal onset and performing a fertility assay in mice and rats. J. Vis. Exp. 13, 58352. https://doi.org/10.3791/58352 (2018).

CAS 

Google Scholar 

Nizar, N., Marikkar, J. & Hashim, D. Differentiation of lard, chicken fat, beef fat and mutton fat by GCMS and EA-IRMS techniques. J. Oleo Sci. 62, 459–464 (2013).

CAS 

Google Scholar 

FAO. Fats and fatty acids in human nutrition: report of an expert consultation. FAO Food Nutr. 91, 1–166 (2010).

Google Scholar 

Dehghan, M. et al. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study. Lancet 392, 2288–2297 (2018).

PubMed 

Google Scholar 

Dinh, T. & To, K. Wes schilling, M. Fatty acid composition of meat animals as flavor precursors. Meat Muscle Biol. 34, 1–16. https://doi.org/10.22175/mmb.12251 (2021).

CAS 

Google Scholar 

Podrini, C. et al. High-fat feeding rapidly induces obesity and lipid derangements in C57BL/6 N mice. Mamm. Genome. 24, 240–251 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Kopp, W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab. Syndr. Obes. 12, 2221–2236 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Wondmkun, Y. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes Metab. Syndr. Obes. 13, 3611–3616 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Hwang, K., Tung, H., Lu, Y. & Shaw, H. Liquid chicken oil could be a healthy dietary oil. J. Oleo Sci. 70, 1157–1164 (2021).

CAS 
PubMed 

Google Scholar 

Aloysius, T. et al. Plasma cholesterol- and body fat-lowering effects of chicken protein hydrolysate and oil in high-fat fed male Wistar rats. Nutrients 14, 5364. https://doi.org/10.3390/nu14245364 (2022).

CAS 

Google Scholar 

Svenson, K. et al. Multiple trait measurements in 43 inbred mouse strains capture the phenotypic diversity characteristic of human populations. J. Appl. Physiol. 102, 2369–2378 (2007).

CAS 
PubMed 

Google Scholar 

Gordon, S. et al. A comparison of the mouse and human lipoproteome: suitability of the mouse model for studies of human lipoproteins. J. Proteome Res. 14, 2686–2695 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Dobiasova, M. et al. Cholesterol esterification and atherogenic index of plasma correlate with lipoprotein size and findings on coronary angiography. J. Lipid Res. 52, 566–571 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Ochiai, M. Evaluating the appropriate oral lipid tolerance test model for investigating plasma triglyceride elevation in mice. PLoS One 6, e0235875. https://doi.org/10.1371/journal.pone.0235875 (2020).

CAS 

Google Scholar 

Fang, J. et al. AMPKα pathway involved in hepatic triglyceride metabolism disorder in diet-induced obesity mice following Escherichia coli infection. Aging (Albany NY) 6, 3161–3172. https://doi.org/10.18632/aging.101623 (2018).

Google Scholar 

Jiang, T. et al. Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J. Biol. Chem. 280, 32317–32325. https://doi.org/10.1074/jbc.M500801200 (2005).

CAS 
PubMed 

Google Scholar 

Kalaany, N. Y. et al. LXRs regulate the balance between fat storage and oxidation. Cell Metabol. 1, 231–244. https://doi.org/10.1016/j.cmet.2005.03.001 (2005).

CAS 

Google Scholar 

Montgomery, M. K. et al. Association of muscle lipidomic profile with high-fat diet-induced insulin resistance across five mouse strains. Sci. Rep. 7, 13914. https://doi.org/10.1038/s41598-017-14214-1( (2017).

ADS 
PubMed 
PubMed Central 

Google Scholar 

Chitraju, C. et al. Mice lacking triglyceride synthesis enzymes in adipose tissue are resistant to diet-induced obesity. eLife 12, RP88049. https://doi.org/10.7554/eLife.88049.3 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Schoeler, M. & Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 20, 461–472. https://doi.org/10.1007/s11154-019-09512-0 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Brayton, C., Treuting, P. & Ward, J. Pathobiology of aging mice and GEM: background strains and experimental design. Vet. Pathol. 49, 85–105 (2012).

CAS 
PubMed 

Google Scholar 

Aldabbagh, E., Alhyali, H. & Ismaeel, H. The effects of ghee administration in comparison to sunflower seeds oil on liver tissue and some biochemical parameters in rats. Iraqi J. Vet. Sci. 36, 241–248 (2022).

Google Scholar 

Cho, Y. et al. Lipid remodeling of adipose tissue in metabolic health and disease. Exp. Mol. Med. 55, 1955–1973 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Peña-Saldarriaga, L., Fernández-López, J. & Pérez-Alvarez, J. Quality of chicken fat by-products: Lipid profile and colour properties. Foods 9, 1046. https://doi.org/10.3390/foods9081046 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Dal Bosco, A. et al. Indexing of fatty acids in poultry meat for its characterization in healthy human nutrition: a comprehensive application of the scientific literature and new proposals. Nutrients 14,3110. https://doi.org/10.3390/nu14153110 (2022).

Google Scholar 

German, J. et al. A reappraisal of the impact of dairy foods and milk fat on cardiovascular disease risk. Eur. J. Nutr. 48, 191–203. https://doi.org/10.1007/s00394-009-0002-5 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Lawrence, G. Dietary fats and health: dietary recommendations in the context of scientific evidence. Adv. Nutr. 4, 294–302. https://doi.org/10.3945/an.113.003657 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Duwaerts, C. & Maher, J. Macronutrients and the adipose-liver axis in obesity and fatty liver. Cell. Mol. Gastroenterol. Hepatol. 7, 749–761. https://doi.org/10.1016/j.jcmgh.2019.02.001 (2019).

PubMed 
PubMed Central 

Google Scholar 

Jahan, M. et al. Comparative analysis of high-fat diets: effects of mutton, beef, and vegetable fats on body weight, biochemical profiles, and liver histology in mice. Heliyon 10, e39349. https://doi.org/10.1016/j.heliyon.2024.e39349 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Palmquist, D. L. Great discoveries of milk for a healthy diet and a healthy life. R. Bras. Zootec. 39, 465–477. https://doi.org/10.1590/S1516-35982010001300051( (2010).

Google Scholar 

Zhao, B. et al. Plant and animal fat intake and overall and cardiovascular disease mortality. JAMA Intern. Med. 184, 1234–1245. https://doi.org/10.1001/jamainternmed.2024.3799 (2024).

CAS 
PubMed 

Google Scholar 

Dining and Cooking