Galli, B. D. Sustainability implications and relevance of using omics sciences to investigate cheeses with protected designation of origin. J. Sci. Food Agric. 104, 6388–6396 (2024).
Google Scholar
Masotti, F., Hogenboom, J. A., Rosi, V., De Noni, I. & Pellegrino, L. Proteolysis indices related to cheese ripening and typicalness in PDO Grana Padano cheese. Int. Dairy J. 20, 352–359 (2010).
Google Scholar
Ercolini, D. High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl. Environ. Microbiol. 79, 3148–3155 (2013).
Google Scholar
Giraffa, G. The Microbiota of Grana Padano cheese. A review. Foods 10, 2632 (2021).
Google Scholar
De Filippis, F. et al. Microbiome mapping in dairy industry reveals new species and genes for probiotic and bioprotective activities. npj Biofilms Microbiomes 10, 67 (2024).
Google Scholar
Afshari, R., Pillidge, C. J., Dias, D. A., Osborn, A. M. & Gill, H. Cheesomics: the future pathway to understanding cheese flavour and quality. Crit. Rev. Food Sci. Nutr. 60, 33–47 (2020).
Google Scholar
De Filippis, F., Genovese, A., Ferranti, P., Gilbert, J. A. & Ercolini, D. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate. Sci. Rep. 6, 21871 (2016).
Google Scholar
Bertuzzi, A. S., McSweeney, P. L. H., Rea, M. C. & Kilcawley, K. N. Detection of volatile compounds of cheese and their contribution to the flavor profile of surface-ripened cheese. Compr. Rev. Food Sci. Food Saf. 17, 371–390 (2018).
Google Scholar
Anastasiou, R. et al. Omics approaches to assess flavor development in cheese. Foods 11, 188 (2022).
Google Scholar
Neviani, E., Bottari, B., Lazzi, C. & Gatti, M. New developments in the study of the microbiota of raw-milk, long-ripened cheeses by molecular methods: the case of Grana Padano and Parmigiano Reggiano. Front. Microbiol. 4, 36 (2013).
Google Scholar
Qian, M. & Reineccius, G. Potent aroma compounds in Parmigiano Reggiano cheese studied using a dynamic headspace (purge-trap) method. Flavour Fragr. J. 18, 252–259 (2003).
Google Scholar
Hayaloglu, A. A. Volatile composition and proteolysis in traditionally produced mature Kashar cheese. Int. J. Food Sci. Technol. 44, 1388–1394 (2009).
Google Scholar
Bottari, B. et al. The interrelationship between microbiota and peptides during ripening as a driver for Parmigiano Reggiano cheese quality. Front. Microbiol. 11, 581658 (2020).
Google Scholar
Sforza, S., Ferroni, L., Galaverna, G., Dossena, A. & Marchelli, R. Extraction, semi-quantification, and fast on-line identification of oligopeptides in Grana Padano cheese by HPLC-MS. J. Agric. Food Chem. 51, 2130–2135 (2003).
Google Scholar
Summer, A. et al. Cheese as functional food: the example of Parmigiano Reggiano and Grana Padano. Food Technol. Biotechnol. 55, 277–289 (2017).
Google Scholar
Rangel, A. H. D. N. et al. An overview of the occurrence of bioactive peptides in different types of cheeses. Foods 12, 4261 (2023).
Google Scholar
Dinan, T. G., Stanton, C. & Cryan, J. F. Psychobiotics: a novel class of psychotropic. Biol. Psychiatry 74, 720–726 (2013).
Google Scholar
Balasubramanian, R., Schneider, E., Gunnigle, E., Cotter, P. D. & Cryan, J. F. Fermented foods: Harnessing their potential to modulate the microbiota-gut-brain axis for mental health. Neurosci. Biobehav. Rev. 158, 105562 (2024).
Google Scholar
Ijaz, M. U. et al. Microbiome and neurological disorders. in Human Microbiome 273–301. https://doi.org/10.1007/978-981-97-3790-1_9 (Springer Nature Singapore, 2024).
Magliulo, R. et al. Microbiome signatures associated with flavor development differentiate Protected Designation of origin water Buffalo Mozzarella cheese from different production areas. Food Res. Int. 192, 114798 (2024).
Google Scholar
Afshari, R. et al. New insights into cheddar cheese microbiota-metabolome relationships revealed by integrative analysis of multi-omics data. Sci. Rep. 10, 3164 (2020).
Google Scholar
Bottari, B., Levante, A., Neviani, E. & Gatti, M. How the fewest become the greatest. L. casei’s impact on long ripened cheeses. Front. Microbiol. 9, 2866 (2018).
Google Scholar
Kim, E., Yang, S.-M. & Kim, H.-Y. Differentiation of Lacticaseibacillus zeae using pan-genome analysis and real-time PCR method targeting a unique gene. Foods 10, 2112 (2021).
Google Scholar
da Silva Duarte, V., Lombardi, A., Corich, V. & Giacomini, A. Assessment of the microbiological origin of blowing defects in Grana Padano Protected Designation of Origin cheese. J. Dairy Sci. 105, 2858–2867 (2022).
Google Scholar
Avila, M., Gómez-Torres, N., Hernández, M. & Garde, S. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species. Int. J. Food Microbiol. 172, 70–75 (2014).
Google Scholar
Kleerebezem, M. et al. The extracellular biology of the lactobacilli. FEMS Microbiol. Rev. 34, 199–230 (2010).
Google Scholar
D’Incecco, P. et al. Lysozyme affects the microbial catabolism of free arginine in raw-milk hard cheeses. Food Microbiol. 57, 16–22 (2016).
Google Scholar
Dias, R., Vilas-Boas, E., Campos, F. M., Hogg, T. & Couto, J. A. Activity of lysozyme on Lactobacillus hilgardii strains isolated from Port wine. Food Microbiol. 49, 6–11 (2015).
Google Scholar
Bassi, D., Puglisi, E. & Cocconcelli, P. S. Understanding the bacterial communities of hard cheese with blowing defect. Food Microbiol. 52, 106–118 (2015).
Google Scholar
Courtin, P. et al. Accelerating cheese proteolysis by enriching Lactococcus lactis proteolytic system with lactobacilli peptidases. Int. Dairy J. 12, 447–454 (2002).
Google Scholar
Gatti, M. et al. A model to assess lactic acid bacteria aminopeptidase activities in Parmigiano Reggiano cheese during ripening. J. Dairy Sci. 91, 4129–4137 (2008).
Google Scholar
Bancalari, E. et al. An integrated strategy to discover Lactobacillus casei group strains for their potential use as aromatic starters. Food Res. Int. 100, 682–690 (2017).
Google Scholar
Sgarbi, E. et al. Nonstarter lactic acid bacteria volatilomes produced using cheese components. J. Dairy Sci. 96, 4223–4234 (2013).
Google Scholar
Randazzo, C. L. et al. Preliminary characterization of wild lactic acid bacteria and their abilities to produce flavour compounds in ripened model cheese system. J. Appl. Microbiol. 103, 427–435 (2007).
Google Scholar
Lazzi, C. et al. Can the development and autolysis of lactic acid bacteria influence the cheese volatile fraction? The case of Grana Padano. Int. J. Food Microbiol. 233, 20–28 (2016).
Google Scholar
Illikoud, N., Mantel, M., Rolli-Derkinderen, M., Gagnaire, V. & Jan, G. Dairy starters and fermented dairy products modulate gut mucosal immunity. Immunol. Lett. 251–252, 91–102 (2022).
Google Scholar
Walther, B. et al. Quantitative analysis of menaquinones (vitamin K2) in various types of cheese from Switzerland. Int. Dairy J. 112, 104853 (2021).
Google Scholar
Berding, K. et al. Feed your microbes to deal with stress: a psychobiotic diet impacts microbial stability and perceived stress in a healthy adult population. Mol. Psychiatry 28, 601–610 (2023).
Google Scholar
Moreira, G. M. M. et al. Effect of ripening time on proteolysis, free amino acids, bioactive amines and texture profile of Gorgonzola-type cheese. LWT 98, 583–590 (2018).
Google Scholar
Lacroix, N., St-Gelais, D., Champagne, C. P. & Vuillemard, J. C. Gamma-aminobutyric acid-producing abilities of lactococcal strains isolated from old-style cheese starters. Dairy Sci. Technol. 93, 315–327 (2013).
Google Scholar
Sousa, R. J. M., Ribeiro, S. C., Baptista, J. A. B. & Silva, C. C. G. Evaluation of gamma-aminobutyric acid content in Portuguese cheeses with protected designation of origin status. J. Dairy Res. 90, 1–4 (2023).
Park, K.-B. & Oh, S.-H. Isolation and characterization of Lactobacillus buchneri strains with high γ-aminobutyric acid producing capacity from naturally aged cheese. Food Sci. Biotechnol. 15, 86–90 (2006).
Google Scholar
Cho, Y. R., Chang, J. Y. & Chang, H. C. Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17, 104–109 (2007).
Google Scholar
Valenzuela, J. A., Flórez, A. B., Vázquez, L., Vasek, O. M. & Mayo, B. Production of γ-aminobutyric acid (GABA) by lactic acid bacteria strains isolated from traditional, starter-free dairy products made of raw milk. Benef. Microbes 10, 579–587 (2019).
Google Scholar
Sanders, J. W. et al. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol. Microbiol. 27, 299–310 (1998).
Google Scholar
Chen, M. et al. Neurotransmitter and intestinal interactions: focus on the Microbiota-gut-brain axis in irritable bowel syndrome. Front. Endocrinol.13, 817100 (2022).
Laroute, V. et al. Lactococcus lactis NCDO2118 exerts visceral antinociceptive properties in rat via GABA production in the gastro-intestinal tract. eLife 11, e77100 (2022).
Google Scholar
Liang, S. et al. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310, 561–577 (2015).
Google Scholar
Murru, E. et al. Conjugated linoleic acid and brain metabolism: a possible anti-neuroinflammatory role mediated by PPARα activation. Front. Pharmacol. 11, 587140 (2020).
Google Scholar
Fujita, Y. et al. Dietary cis-9, trans-11-conjugated linoleic acid reduces amyloid β-protein accumulation and upregulates anti-inflammatory cytokines in an Alzheimer’s disease mouse model. Sci. Rep. 11, 9749 (2021).
Google Scholar
Valcarcel-Jimenez, L. & Frezza, C. Fumarate hydratase (FH) and cancer: a paradigm of oncometabolism. Br. J. Cancer 129, 1546–1557 (2023).
Google Scholar
Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 106, 3698–3703 (2009).
Google Scholar
Bertani, G. et al. Dynamics of a natural bacterial community under technological and environmental pressures: the case of natural whey starter for Parmigiano Reggiano cheese. Food Res. Int. 129, 108860 (2020).
Google Scholar
Neviani, E., Levante, A. & Gatti, M. The microbial community of natural whey starter: Why is it a driver for the production of the most famous Italian long-ripened cheeses?. Fermentation 10, 186 (2024).
Lazzi, C., Rossetti, L., Zago, M., Neviani, E. & Giraffa, G. Evaluation of bacterial communities belonging to natural whey starters for Grana Padano cheese by length heterogeneity-PCR. J. Appl. Microbiol. 96, 481–490 (2004).
Google Scholar
De Dea Lindner, J. et al. Parmigiano Reggiano cheese: evolution of cultivable and total lactic microflora and peptidase activities during manufacture and ripening. Dairy Sci. Technol. 88, 511–523 (2008).
Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).
Google Scholar
Blanco-Míguez, A. et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat. Biotechnol. 41, 1633–1644 (2023).
Google Scholar
Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
Google Scholar
Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).
Google Scholar
Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).
Google Scholar
Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20 (2019).
Google Scholar
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
Google Scholar
Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).
Google Scholar
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
Google Scholar
Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).
Google Scholar
Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82 (2024).
Google Scholar
Liao, H., Ji, Y. & Sun, Y. High-resolution strain-level microbiome composition analysis from short reads. Microbiome 11, 183 (2023).
Google Scholar
Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132 (2010).
Google Scholar
Rawlings, N. D., Waller, M., Barrett, A. J. & Bateman, A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42, D503–D509 (2014).
Google Scholar
Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).
Google Scholar
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
Google Scholar
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).
Google Scholar
da Silva Duarte, V. et al. Database selection for shotgun metaproteomic of low-diversity dairy microbiomes. Int. J. Food Microbiol. 418, 110706 (2024).
Google Scholar
Balivo, A. et al. Can hydroponic forage affect the chemical and sensory properties of PDO buffalo Mozzarella cheese? Int. J. Dairy Technol. 78, e13147 (2025).
Dining and Cooking