Donini LM, Serra-Majem L, Bulló M, Gil Á, Salas-Salvadó J. The Mediterranean diet: culture, health and science. Br J Nutr. 2015;113(Suppl 2):S1-3.
Google Scholar
Trichopoulou A. Mediterranean diet as intangible heritage of humanity: 10 years on. Nutr Metab Cardiovasc Dis. 2021;31(7):1943–8.
Google Scholar
Mocciaro G, Ziauddeen N, Godos J, Marranzano M, Chan M-Y, Ray S. Does a Mediterranean-type dietary pattern exert a cardio-protective effect outside the Mediterranean region? A review of current evidence. Int J Food Sci Nutr. 2018;69(5):524–35.
Google Scholar
Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011;14(12A):2274–84.
Google Scholar
Vareiro D, Bach-Faig A, Raidó Quintana B, Bertomeu I, Buckland G, Vaz de Almeida MD, et al. Availability of Mediterranean and non-Mediterranean foods during the last four decades: comparison of several geographical areas. Public Health Nutr. 2009;12(9A):1667–75.
Google Scholar
da Silva R, Bach-Faig A, Raidó Quintana B, Buckland G, Vaz de Almeida MD, Serra-Majem L. Worldwide variation of adherence to the Mediterranean diet, in 1961–1965 and 2000–2003. Public Health Nutr. 2009;12(9A):1676–84.
Google Scholar
Damigou E, Faka A, Kouvari M, Anastasiou C, Kosti RI, Chalkias C, et al. Adherence to a Mediterranean type of diet in the world: a geographical analysis based on a systematic review of 57 studies with 1,125,560 participants. Int J Food Sci Nutr. 2023;74:1–15.
Google Scholar
Martínez-González MÁ, Hershey MS, Zazpe I, Trichopoulou A. Correction: Martínez-González, M.A. et al. Transferability of the Mediterranean Diet to Non-Mediterranean Countries. What Is and What Is Not the Mediterranean Diet. Nutrients 2017, 9, 1226. Nutrients. 2018;10(7):823.
Serra-Majem L, Bach-Faig A, Raidó-Quintana B. Nutritional and cultural aspects of the Mediterranean diet. Int J Vitam Nutr Res. 2012;82(3):157–62.
Google Scholar
Colao A, Vetrani C, Muscogiuri G, Barrea L, Tricopoulou A, Soldati L, et al. “Planeterranean” Diet: extending worldwide the health benefits of Mediterranean Diet based on nutritional properties of locally available foods. J Transl Med. 2022;20(1):232.
Google Scholar
Radd-Vagenas S, Kouris-Blazos A, Singh MF, Flood VM. Evolution of Mediterranean diets and cuisine: concepts and definitions. Asia Pac J Clin Nutr. 2017;26(5):749–63.
Google Scholar
Bonaccio M, Iacoviello L, Donati MB, de Gaetano G. The tenth anniversary as a UNESCO world cultural heritage: an unmissable opportunity to get back to the cultural roots of the Mediterranean diet. Eur J Clin Nutr. 2022;76(2):179–83.
Google Scholar
Tolomeo M, De Carli L, Guidi S, Zanardi M, Giacomini D, Devecchi C, et al. The Mediterranean diet: from the pyramid to the circular model. Med J Nutr Metab. 2023;16:1–13.
Xavier MF. Mediterranean diet, culture and heritage: challenges for a new conception. Public Health Nutr. 2009;12(9A):1618–20.
Google Scholar
Cristiani E, Radini A, Edinborough M, Borić D. Dental calculus reveals Mesolithic foragers in the Balkans consumed domesticated plant foods. Proc Natl Acad Sci USA. 2016;113(37):10298–303.
Google Scholar
Cristiani E, Radini A, Zupancich A, Gismondi A, D’Agostino A, Ottoni C, et al. Wild cereal grain consumption among Early Holocene foragers of the Balkans predates the arrival of agriculture. Elife. 2021;10: e72976.
Google Scholar
Pontzer H, Wood BM. Effects of evolution, ecology, and economy on human diet: insights from hunter-gatherers and other small-scale societies. Annu Rev Nutr. 2021;41:363–85.
Google Scholar
Prats G, Antolín F, Alonso N. Household storage, surplus and supra-household storage in prehistoric and protohistoric societies of the Western Mediterranean. PLoS ONE. 2020;15(9): e0238237.
Google Scholar
Mannino MA, Catalano G, Talamo S, Mannino G, Di Salvo R, Schimmenti V, et al. Origin and diet of the prehistoric hunter-gatherers on the mediterranean island of Favignana (Ègadi Islands, Sicily). PLoS ONE. 2012;7(11): e49802.
Google Scholar
Fregel R, Méndez FL, Bokbot Y, Martín-Socas D, Camalich-Massieu MD, Santana J, et al. Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe. Proc Natl Acad Sci USA. 2018;115(26):6774–9.
Google Scholar
Zohary D, Spiegel-Roy P. Beginnings of fruit growing in the old world. Science. 1975;187(4174):319–27.
Google Scholar
Zeder MA. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proc Natl Acad Sci USA. 2008;105(33):11597–604.
Google Scholar
Moro E. The Mediterranean diet from ancel keys to the UNESCO cultural heritage. A pattern of sustainable development between myth and reality. Procedia Soc Behav Sci. 2016;223:655–61.
Google Scholar
Besnard G, Terral J-F, Cornille A. On the origins and domestication of the olive: a review and perspectives. Ann Bot. 2018;121(3):385–403.
Google Scholar
Barazani O, Dag A, Dunseth Z. The history of olive cultivation in the southern Levant. Front Plant Sci. 2023;14:1131557.
Google Scholar
Trichopoulou A. Olive oil, Greek Mediterranean diet heritage and honoring the past to secure our future: Priorities for research and education. Front Nutr. 2022;9:1058402.
Google Scholar
Clodoveo ML, Camposeo S, De Gennaro B, Pascuzzi S, Roselli L. In the ancient world, virgin olive oil was called “liquid gold” by Homer and “the great healer” by Hippocrates. Why has this mythic image been forgotten? Food Res Int. 2014;62:1062–8.
Google Scholar
Bonhomme V, Ivorra S, Lacombe T, Evin A, Figueiral I, Maghradze D, et al. Pip shape echoes grapevine domestication history. Sci Rep. 2021;11(1):21381.
Google Scholar
Dong Y, Duan S, Xia Q, Liang Z, Dong X, Margaryan K, et al. Dual domestications and origin of traits in grapevine evolution. Science. 2023;379(6635):892–901.
Google Scholar
Aversano R, Basile B, Buonincontri MP, Carucci F, Carputo D, Frusciante L, et al. Dating the beginning of the Roman viticultural model in the Western Mediterranean: the case study of Chianti (Central Italy). PLoS ONE. 2017;12(11): e0186298.
Google Scholar
Schwartz SA. Water, wine and the sacred, an anthropological view of substances altered by intentioned awareness, including objective and aesthetic effects. Explore (NY). 2019;15(1):13–8.
Google Scholar
McCann S. Wine, blood and religion. Bone Marrow Transplant. 2022;57(9):1355–6.
Google Scholar
Tanno K-I, Willcox G. How fast was wild wheat domesticated? Science. 2006;311(5769):1886.
Google Scholar
Abbo S, Saranga Y, Peleg Z, Kerem Z, Lev-Yadun S, Gopher A. Reconsidering domestication of legumes versus cereals in the ancient near east. Q Rev Biol. 2009;84(1):29–50.
Google Scholar
Naureen Z, Dhuli K, Donato K, Aquilanti B, Velluti V, Matera G, et al. Foods of the Mediterranean diet: tomato, olives, chili pepper, wheat flour and wheat germ. J Prev Med Hyg. 2022;63(2 Suppl 3):E4-11.
Google Scholar
Allbaugh LG. Crete: a case study of an underdeveloped area. Princeton: Princeton University Press; 1953.
Google Scholar
Keys A. Mediterranean diet and public health: personal reflections. Am J Clin Nutr. 1995;61(6 Suppl):1321S-1323S.
Google Scholar
Keys A. The diet/heart controversy. Lancet. 1979;2(8147):844–5.
Google Scholar
Lăcătușu C-M, Grigorescu E-D, Floria M, Onofriescu A, Mihai B-M. The Mediterranean diet: from an environment-driven food culture to an emerging medical prescription. Int J Environ Res Public Health. 2019;16(6):942.
Google Scholar
Trichopoulou A, Kouris-Blazos A, Wahlqvist ML, Gnardellis C, Lagiou P, Polychronopoulos E, et al. Diet and overall survival in elderly people. BMJ. 1995;311(7018):1457–60.
Google Scholar
Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25): e34.
Google Scholar
Dinu M, Pagliai G, Casini A, Sofi F. Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur J Clin Nutr. 2018;72(1):30–43.
Google Scholar
D’Alessandro A, De Pergola G. The Mediterranean Diet: its definition and evaluation of a priori dietary indexes in primary cardiovascular prevention. Int J Food Sci Nutr. 2018;69(6):647–59.
Google Scholar
Bach A, Serra-Majem L, Carrasco JL, Roman B, Ngo J, Bertomeu I, et al. The use of indexes evaluating the adherence to the Mediterranean diet in epidemiological studies: a review. Public Health Nutr. 2006;9(1A):132–46.
Google Scholar
Hutchins-Wiese HL, Bales CW, Porter Starr KN. Mediterranean diet scoring systems: understanding the evolution and applications for Mediterranean and non-Mediterranean countries. Br J Nutr. 2022;128(7):1371–92.
Google Scholar
Naureen Z, Dhuli K, Donato K, Aquilanti B, Velluti V, Matera G, et al. Foods of the Mediterranean diet: citrus, cucumber and grape. J Prev Med Hyg. 2022;63(2 Suppl 3):E21–7.
Google Scholar
Armas Diaz Y, Machì M, Salinari A, Pérez-Oleaga CM, Martínez López NM, Briones Urbano M, et al. Prickly pear fruits from Opuntia ficus-indica varieties as a source of potential bioactive compounds in the Mediterranean diet. Med J Nutrition Metab. 2022;15(4):581–92.
Grosso G, Godos J, Lamuela-Raventos R, Ray S, Micek A, Pajak A, et al. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: level of evidence and limitations. Mol Nutr Food Res. 2017;61(4):1600930.
Google Scholar
Micek A, Godos J, Brzostek T, Gniadek A, Favari C, Mena P, et al. Dietary phytoestrogens and biomarkers of their intake in relation to cancer survival and recurrence: a comprehensive systematic review with meta-analysis. Nutr Rev. 2021;79(1):42–65.
Google Scholar
Micek A, Godos J, Del Rio D, Galvano F, Grosso G. Dietary flavonoids and cardiovascular disease: a comprehensive dose-response meta-analysis. Mol Nutr Food Res. 2021;65(6): e2001019.
Google Scholar
Godos J, Vitale M, Micek A, Ray S, Martini D, Del Rio D, et al. Dietary polyphenol intake, blood pressure, and hypertension: a systematic review and meta-analysis of observational studies. Antioxidants (Basel). 2019;8(6):152.
Google Scholar
Godos J, Micek A, Mena P, Del Rio D, Galvano F, Castellano S, et al. Dietary (Poly)phenols and cognitive decline: a systematic review and meta-analysis of observational studies. Mol Nutr Food Res. 2023;68: e2300472.
Google Scholar
Grosso G, Micek A, Godos J, Pajak A, Sciacca S, Galvano F, et al. Dietary flavonoid and lignan intake and mortality in prospective cohort studies: systematic review and dose-response meta-analysis. Am J Epidemiol. 2017;185(12):1304–16.
Google Scholar
Grosso G, Laudisio D, Frias-Toral E, Barrea L, Muscogiuri G, Savastano S, et al. Anti-inflammatory nutrients and obesity-associated metabolic-inflammation: state of the art and future direction. Nutrients. 2022;14(6):1137.
Google Scholar
Mena P, Bresciani L. Dietary fibre modifies gut microbiota: what’s the role of (poly)phenols? Int J Food Sci Nutr. 2020;71(7):783–4.
Google Scholar
Karam J, Bibiloni MDM, Pons A, Tur JA. Total fat and fatty acid intakes and food sources in Mediterranean older adults requires education to improve health. Nutr Res. 2020;73:67–74.
Google Scholar
Godos J, Marventano S, Mistretta A, Galvano F, Grosso G. Dietary sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyle (MEAL) study cohort. Int J Food Sci Nutr. 2017;68(6):750–6.
Google Scholar
Tresserra-Rimbau A, Medina-Remón A, Pérez-Jiménez J, Martínez-González MA, Covas MI, Corella D, et al. Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: the PREDIMED study. Nutr Metab Cardiovasc Dis. 2013;23(10):953–9.
Google Scholar
Zamora-Ros R, Knaze V, Rothwell JA, Hémon B, Moskal A, Overvad K, et al. Dietary polyphenol intake in Europe: the European prospective investigation into cancer and nutrition (EPIC) study. Eur J Nutr. 2016;55(4):1359–75.
Google Scholar
Ravaut G, Légiot A, Bergeron K-F, Mounier C. Monounsaturated fatty acids in obesity-related inflammation. Int J Mol Sci. 2020;22(1):330.
Google Scholar
Isaakidis A, Maghariki JE, Carvalho-Barros S, Gomes AM, Correia M. Is there more to olive oil than healthy lipids? Nutrients. 2023;15(16):3625.
Google Scholar
Degirolamo C, Rudel LL. Dietary monounsaturated fatty acids appear not to provide cardioprotection. Curr Atheroscler Rep. 2010;12(6):391–6.
Google Scholar
Martínez-González MA, Sayón-Orea C, Bullón-Vela V, Bes-Rastrollo M, Rodríguez-Artalejo F, Yusta-Boyo MJ, et al. Effect of olive oil consumption on cardiovascular disease, cancer, type 2 diabetes, and all-cause mortality: a systematic review and meta-analysis. Clin Nutr. 2022;41(12):2659–82.
Google Scholar
Jabbarzadeh-Ganjeh B, Jayedi A, Shab-Bidar S. The effects of olive oil consumption on blood lipids: a systematic review and dose-response meta-analysis of randomised controlled trials. Br J Nutr. 2023;130(4):728–36.
Google Scholar
Derakhshandeh-Rishehri S-M, Kazemi A, Shim SR, Lotfi M, Mohabati S, Nouri M, et al. Effect of olive oil phenols on oxidative stress biomarkers: a systematic review and dose-response meta-analysis of randomized clinical trials. Food Sci Nutr. 2023;11(5):2393–402.
Google Scholar
Markellos C, Ourailidou M-E, Gavriatopoulou M, Halvatsiotis P, Sergentanis TN, Psaltopoulou T. Olive oil intake and cancer risk: a systematic review and meta-analysis. PLoS ONE. 2022;17(1): e0261649.
Google Scholar
Costanzo S, Di Castelnuovo A, Donati MB, Iacoviello L, de Gaetano G. Alcohol consumption and mortality in patients with cardiovascular disease: a meta-analysis. J Am Coll Cardiol. 2010;55(13):1339–47.
Google Scholar
Di Castelnuovo A, Costanzo S, di Giuseppe R, de Gaetano G, Iacoviello L. Alcohol consumption and cardiovascular risk: mechanisms of action and epidemiologic perspectives. Future Cardiol. 2009;5(5):467–77.
Google Scholar
Di Castelnuovo A, Costanzo S, Donati MB, Iacoviello L, de Gaetano G. Prevention of cardiovascular risk by moderate alcohol consumption: epidemiologic evidence and plausible mechanisms. Intern Emerg Med. 2010;5(4):291–7.
Google Scholar
Laudani S, Godos J, Di Domenico FM, Barbagallo I, Randazzo CL, Leggio GM, et al. Anthocyanin effects on vascular and endothelial health: evidence from clinical trials and role of gut microbiota metabolites. Antioxidants (Basel). 2023;12(9):1773.
Google Scholar
Capurso C. Whole-grain intake in the Mediterranean diet and a low protein to carbohydrates ratio can help to reduce mortality from cardiovascular disease, slow down the progression of aging, and to improve lifespan: a review. Nutrients. 2021;13(8):2540.
Google Scholar
Lukinac J, Jukić M. Barley in the production of cereal-based products. Plants. 2022;11(24):3519.
Google Scholar
Basile G, De Maio AC, Catalano A, Ceramella J, Iacopetta D, Bonofiglio D, et al. Ancient wheat as promising nutraceuticals for the prevention of chronic and degenerative diseases. Curr Med Chem. 2023;30(30):3384–403.
Google Scholar
Valamoti SM. Ground cereal food preparations from Greece: the prehistory and modern survival of traditional Mediterranean ‘fast foods.’ Archaeol Anthropol Sci. 2011;3(1):19–39.
Google Scholar
Sissons M. Durum wheat products-recent advances. Foods. 2022;11(22):3660.
Google Scholar
Hammami R, Barbar R, Laurent M, Cuq B. Durum wheat couscous grains: an ethnic mediterranean food at the interface of traditional domestic preparation and industrial manufacturing. Foods. 2022;11(7):902.
Google Scholar
Pérez Rodrigo C, Ruiz VV. Wheat, bread and pasta in Mediterranean diets. Arch Latinoam Nutr. 2004;54(2 Suppl 1):52–8.
Google Scholar
Ortega RM, Aparicio Vizuete A, Jiménez Ortega AI, Rodríguez E. Wholegrain cereals and sanitary benefits. Nutr Hosp. 2015;32(Suppl 1):25–31.
Google Scholar
Dankwa R, Aisala H, Kayitesi E, de Kock HL. The sensory profiles of flatbreads made from sorghum, cassava, and cowpea flour used as wheat flour alternatives. Foods. 2021;10(12):3095.
Google Scholar
Slavin JL, Jacobs D, Marquart L. Grain processing and nutrition. Crit Rev Biotechnol. 2001;21(1):49–66.
Google Scholar
Tieri M, Ghelfi F, Vitale M, Vetrani C, Marventano S, Lafranconi A, et al. Whole grain consumption and human health: an umbrella review of observational studies. Int J Food Sci Nutr. 2020;71(6):668–77.
Google Scholar
Marventano S, Vetrani C, Vitale M, Godos J, Riccardi G, Grosso G. Whole grain intake and glycaemic control in healthy subjects: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2017;9(7):769.
Google Scholar
Xu D, Fu L, Pan D, Lu Y, Yang C, Wang Y, et al. Role of whole grain consumption in glycaemic control of diabetic patients: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2021;14(1):109.
Google Scholar
Hui S, Liu K, Lang H, Liu Y, Wang X, Zhu X, et al. Comparative effects of different whole grains and brans on blood lipid: a network meta-analysis. Eur J Nutr. 2019;58(7):2779–87.
Google Scholar
P NPV, Joye IJ. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients. 2020;12(10):3045.
Borneo R, León AE. Whole grain cereals: functional components and health benefits. Food Funct. 2012;3(2):110–9.
Google Scholar
Zhang G, Hamaker BR. The nutritional property of endosperm starch and its contribution to the health benefits of whole grain foods. Crit Rev Food Sci Nutr. 2016;57(18):3807–17.
Google Scholar
Polak R, Phillips EM, Campbell A. Legumes: health benefits and culinary approaches to increase intake. Clin Diabetes. 2015;33(4):198–205.
Google Scholar
Hernández-López I, Ortiz-Solà J, Alamprese C, Barros L, Shelef O, Basheer L, et al. Valorization of local legumes and nuts as key components of the mediterranean diet. Foods. 2022;11(23):3858.
Google Scholar
Preece C, Livarda A, Christin P-A, Wallace M, Martin G, Charles M, et al. How did the domestication of fertile crescent grain crops increase their yields? Funct Ecol. 2017;31(2):387–97.
Google Scholar
Ambika, Aski MS, Gayacharan, Hamwieh A, Talukdar A, Kumar Gupta S, et al. Unraveling origin, history, genetics, and strategies for accelerated domestication and diversification of food legumes. Front Genet. 2022;13:932430.
Google Scholar
Corrado G. Food history and gastronomic traditions of beans in Italy. J Ethnic Foods. 2022;9(1):6.
Google Scholar
Wacker TS, Dresbøll DB. Checking the pulse: perspectives on grain legume production. Trends Plant Sci. 2023;28(9):991–4.
Google Scholar
Akibode S, Maredia M. Global and regional trends in production, trade and consumption of food legume crops. Department of Agricultural, Food and Resource Economics Michigan State University; 2012.
Hughes J, Pearson E, Grafenauer S. Legumes-a comprehensive exploration of global food-based dietary guidelines and consumption. Nutrients. 2022;14(15):3080.
Google Scholar
Sánchez-Chino X, Jiménez-Martínez C, Dávila-Ortiz G, Álvarez-González I, Madrigal-Bujaidar E. Nutrient and nonnutrient components of legumes, and its chemopreventive activity: a review. Nutr Cancer. 2015;67(3):401–10.
Google Scholar
Singh N, Jain P, Ujinwal M, Langyan S. Escalate protein plates from legumes for sustainable human nutrition. Front Nutr. 2022;9: 977986.
Google Scholar
Tor-Roca A, Garcia-Aloy M, Mattivi F, Llorach R, Andres-Lacueva C, Urpi-Sarda M. Phytochemicals in legumes: a qualitative reviewed analysis. J Agric Food Chem. 2020;68(47):13486–96.
Google Scholar
Martini D, Godos J, Marventano S, Tieri M, Ghelfi F, Titta L, et al. Nut and legume consumption and human health: an umbrella review of observational studies. Int J Food Sci Nutr. 2021;72(7):871–8.
Google Scholar
Thorisdottir B, Arnesen EK, Bärebring L, Dierkes J, Lamberg-Allardt C, Ramel A, et al. Legume consumption in adults and risk of cardiovascular disease and type 2 diabetes: a systematic review and meta-analysis. Food Nutr Res. 2023. https://doi.org/10.29219/fnr.v67.9541.
Google Scholar
Mullins AP, Arjmandi BH. Health benefits of plant-based nutrition: focus on beans in cardiometabolic diseases. Nutrients. 2021;13(2):519.
Google Scholar
Amoah I, Ascione A, Muthanna FMS, Feraco A, Camajani E, Gorini S, et al. Sustainable strategies for increasing legume consumption: culinary and educational approaches. Foods. 2023;12(11):2265.
Google Scholar
Larsen CS. Animal source foods and human health during evolution. J Nutr. 2003;133(11 Suppl 2):3893S-3897S.
Google Scholar
Mann NJ. A brief history of meat in the human diet and current health implications. Meat Sci. 2018;144:169–79.
Google Scholar
Leroy F, Smith NW, Adesogan AT, Beal T, Iannotti L, Moughan PJ, et al. The role of meat in the human diet: evolutionary aspects and nutritional value. Anim Front. 2023;13(2):11–8.
Google Scholar
Balanza R, García-Lorda P, Pérez-Rodrigo C, Aranceta J, Bonet MB, Salas-Salvadó J. Trends in food availability determined by the Food and Agriculture Organization’s food balance sheets in Mediterranean Europe in comparison with other European areas. Public Health Nutr. 2007;10(2):168–76.
Google Scholar
Helsing E. Traditional diets and disease patterns of the Mediterranean, circa 1960. Am J Clin Nutr. 1995;61(6 Suppl):1329S-1337S.
Google Scholar
Sans P, Combris P. World meat consumption patterns: an overview of the last fifty years (1961–2011). Meat Sci. 2015;109:106–11.
Google Scholar
Grosso G, La Vignera S, Condorelli RA, Godos J, Marventano S, Tieri M, et al. Total, red and processed meat consumption and human health: an umbrella review of observational studies. Int J Food Sci Nutr. 2022;73(6):726–37.
Google Scholar
Cross AJ, Pollock JRA, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003;63(10):2358–60.
Google Scholar
Demeyer D, Mertens B, De Smet S, Ulens M. Mechanisms linking colorectal cancer to the consumption of (processed) red meat: a review. Crit Rev Food Sci Nutr. 2016;56(16):2747–66.
Google Scholar
Gómez-Donoso C, Martínez-González MÁ, Martínez JA, Gea A, Sanz-Serrano J, Perez-Cueto FJA, et al. A provegetarian food pattern emphasizing preference for healthy plant-derived foods reduces the risk of overweight/obesity in the SUN cohort. Nutrients. 2019;11(7):1553.
Google Scholar
Salazar-García DC, Fontanals-Coll M, Goude G, Subirà ME. “To ‘seafood’ or not to ‘seafood’?” An isotopic perspective on dietary preferences at the Mesolithic-Neolithic transition in the Western Mediterranean. Quatern Int. 2018;470:497–510.
Google Scholar
Mylona D. Fish-eating in Greece from the fifth century B.C. to the seventh century A.D.: a story of impoverished fishermen or luxurious fish banquets? Ann Arbor: University of Michigan Press; 2008.
Pérez-Lloréns JL, Acosta Y, Brun FG. Seafood in Mediterranean countries: a culinary journey through history. Int J Gastron Food Sci. 2021;26: 100437.
Google Scholar
Craig OE, Biazzo M, Tafuri MA. Palaeodietary records of coastal Mediterranean populations. J Mediterranean Stud. 2006;16:63–77.
Mylona D. Fish processing in the Mediterranean: varying traditions, technologies and scales of production with particular reference to the eastern Mediterranean. J Mari Arch. 2018;13(3):419–36.
Google Scholar
Dinçer MT. An overview of the seafood processing sector in some Mediterranean countries. Fish Aquacult Res. 2018;1:23–30.
Jurek J, Owczarek M, Godos J, La Vignera S, Condorelli RA, Marventano S, et al. Fish and human health: an umbrella review of observational studies. Int J Food Sci Nutr. 2022;73(7):851–60.
Google Scholar
Lee KH, Seong HJ, Kim G, Jeong GH, Kim JY, Park H, et al. Consumption of fish and ω-3 fatty acids and cancer risk: an umbrella review of meta-analyses of observational studies. Adv Nutr. 2020;11(5):1134–49.
Google Scholar
Godos J, Castellano S, Galvano F, Grosso G. Linking omega-3 fatty acids and depression. Omega fatty acids in brain and neurological health. Elsevier; 2019. p. 199–212.
Google Scholar
Landrigan PJ, Stegeman JJ, Fleming LE, Allemand D, Anderson DM, Backer LC, et al. Human health and ocean pollution. Ann Glob Health. 2020;86(1):151.
Google Scholar
Cossa D, Knoery J, Bănaru D, Harmelin-Vivien M, Sonke JE, Hedgecock IM, et al. Mediterranean mercury assessment 2022: an updated budget, health consequences, and research perspectives. Environ Sci Technol. 2022;56(7):3840–62.
Google Scholar
Gil A, Gil F. Fish, a Mediterranean source of n-3 PUFA: benefits do not justify limiting consumption. Br J Nutr. 2015;113(Suppl 2):S58-67.
Google Scholar
Rybicka I, Gonçalves A, Oliveira H, Marques A, Nunes ML. Salt reduction in seafood—a review. Food Control. 2022;135: 108809.
Google Scholar
Marventano S, Godos J, Tieri M, Ghelfi F, Titta L, Lafranconi A, et al. Egg consumption and human health: an umbrella review of observational studies. Int J Food Sci Nutr. 2020;71(3):325–31.
Google Scholar
Godos J, Micek A, Brzostek T, Toledo E, Iacoviello L, Astrup A, et al. Egg consumption and cardiovascular risk: a dose-response meta-analysis of prospective cohort studies. Eur J Nutr. 2021;60(4):1833–62.
Google Scholar
Sugano M, Matsuoka R. Nutritional viewpoints on eggs and cholesterol. Foods. 2021;10(3):494.
Google Scholar
Kang JW, Zivkovic AM. Are eggs good again? A precision nutrition perspective on the effects of eggs on cardiovascular risk, taking into account plasma lipid profiles and TMAO. J Nutr Biochem. 2022;100: 108906.
Google Scholar
Puglisi MJ, Fernandez ML. The health benefits of egg protein. Nutrients. 2022;14(14):2904.
Google Scholar
Clayton ZS, Fusco E, Kern M. Egg consumption and heart health: a review. Nutrition. 2017;37:79–85.
Google Scholar
Sanlier N, Üstün D. Egg consumption and health effects: a narrative review. J Food Sci. 2021;86(10):4250–61.
Google Scholar
Campbell MC, Ranciaro A. Human adaptation, demography and cattle domestication: an overview of the complexity of lactase persistence in Africa. Hum Mol Genet. 2021;30(R1):R98-109.
Google Scholar
Montgomery RK, Krasinski SD, Hirschhorn JN, Grand RJ. Lactose and lactase–who is lactose intolerant and why? J Pediatr Gastroenterol Nutr. 2007;45(Suppl 2):S131–7.
Google Scholar
Hinrichs J. Mediterranean milk and milk products. Eur J Nutr. 2004;43(Suppl 1):I/12–17.
Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients. Curr Atheroscler Rep. 2010;12(6):384–90.
Google Scholar
Machate DJ, Figueiredo PS, Marcelino G, de Guimarães RCA, Hiane PA, Bogo D, et al. Fatty acid diets: regulation of gut microbiota composition and obesity and its related metabolic dysbiosis. Int J Mol Sci. 2020;21(11):4093.
Google Scholar
Grosso G. Are there any concerns about dairy food consumption and cardiovascular health? Int J Food Sci Nutr. 2021;72(4):429–31.
Google Scholar
Godos J, Tieri M, Ghelfi F, Titta L, Marventano S, Lafranconi A, et al. Dairy foods and health: an umbrella review of observational studies. Int J Food Sci Nutr. 2020;71(2):138–51.
Google Scholar
Gomes S, Teixeira-Guedes C, Silva E, Baltazar F, Preto A. Colon microbiota modulation by dairy-derived diet: new strategy for prevention and treatment of colorectal cancer. Food Funct. 2022;13(18):9183–94.
Google Scholar
Alvarez-Alvarez I, Toledo E, Lecea O, Salas-Salvadó J, Corella D, Buil-Cosiales P, et al. Adherence to a priori dietary indexes and baseline prevalence of cardiovascular risk factors in the PREDIMED-Plus randomised trial. Eur J Nutr. 2020;59(3):1219–32.
Google Scholar
Hernández-Ruiz A, García-Villanova B, Guerra Hernández EJ, Amiano P, Azpiri M, Molina-Montes E. Description of indexes based on the adherence to the mediterranean dietary pattern: a review. Nutr Hosp. 2015;32(5):1872–84.
Google Scholar
Salas-Salvadó J, Casas-Agustench P, Salas-Huetos A. Cultural and historical aspects of Mediterranean nuts with emphasis on their attributed healthy and nutritional properties. Nutr Metab Cardiovasc Dis. 2011;21(Suppl 1):S1-6.
Google Scholar
Takala R, Ramji DP, Choy E. The beneficial effects of pine nuts and its major fatty acid, pinolenic acid, on inflammation and metabolic perturbations in inflammatory disorders. Int J Mol Sci. 2023;24(2):1171.
Google Scholar
Melelli A, Jamme F, Beaugrand J, Bourmaud A. Evolution of the ultrastructure and polysaccharide composition of flax fibres over time: when history meets science. Carbohydr Polym. 2022;291: 119584.
Google Scholar
Muhammad Anjum F, Nadeem M, Issa Khan M, Hussain S. Nutritional and therapeutic potential of sunflower seeds: a review. Br Food J. 2012;114(4):544–52.
Google Scholar
Dotto JM, Chacha JS. The potential of pumpkin seeds as a functional food ingredient: a review. Sci Afr. 2020;10: e00575.
Balakrishna R, Bjørnerud T, Bemanian M, Aune D, Fadnes LT. Consumption of nuts and seeds and health outcomes including cardiovascular disease, diabetes and metabolic disease, cancer, and mortality: an umbrella review. Adv Nutr. 2022;13(6):2136–48.
Google Scholar
Arnesen EK, Thorisdottir B, Bärebring L, Söderlund F, Nwaru BI, Spielau U, et al. Nuts and seeds consumption and risk of cardiovascular disease, type 2 diabetes and their risk factors: a systematic review and meta-analysis. Food Nutr Res. 2023. https://doi.org/10.29219/fnr.v67.8961.
Google Scholar
Ramírez-Coronel AA, Ali Alhilali KA, Basheer Ahmed Y, Almalki SG, Karimian J. Effect of sesame (Sesamum indicum L.) consumption on glycemic control in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2023;37(9):3809–19.
Google Scholar
Huang H, Zhou G, Pu R, Cui Y, Liao D. Clinical evidence of dietary supplementation with sesame on cardiovascular risk factors: an updated meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2022;62(20):5592–602.
Google Scholar
Askarpour M, Alami F, Campbell MS, Venkatakrishnan K, Hadi A, Ghaedi E. Effect of fenugreek supplementation on blood lipids and body weight: a systematic review and meta-analysis of randomized controlled trials. J Ethnopharmacol. 2020;253: 112538.
Google Scholar
Li L, Li H, Gao Y, Vafaei S, Zhang X, Yang M. Effect of flaxseed supplementation on blood pressure: a systematic review, and dose-response meta-analysis of randomized clinical trials. Food Funct. 2023;14(2):675–90.
Google Scholar
Rahimlou M, Jahromi NB, Hasanyani N, Ahmadi AR. Effects of flaxseed interventions on circulating inflammatory biomarkers: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2019;10(6):1108–19.
Google Scholar
Wu JHY, Hodgson JM, Puddey IB, Belski R, Burke V, Croft KD. Sesame supplementation does not improve cardiovascular disease risk markers in overweight men and women. Nutr Metab Cardiovasc Dis. 2009;19(11):774–80.
Google Scholar
Amini MR, Payandeh N, Sheikhhossein F, Pourreza S, Ghalandari H, Askarpour M, et al. The effects of fenugreek seed consumption on blood pressure: a systematic review and meta-analysis of randomized controlled trials. High Blood Press Cardiovasc Prev. 2023;30(2):123–33.
Google Scholar
Villarreal-Renteria AI, Herrera-Echauri DD, Rodríguez-Rocha NP, Zuñiga LY, Muñoz-Valle JF, García-Arellano S, et al. Effect of flaxseed (Linum usitatissimum) supplementation on glycemic control and insulin resistance in prediabetes and type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2022;70: 102852.
Google Scholar
Grosso G, Estruch R. Nut consumption and age-related disease. Maturitas. 2016;84:11–6.
Google Scholar
Bolling BW, Chen C-YO, Mckay DL, Blumberg JB. Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr Res Rev. 2011;24(2):244–75.
Google Scholar
Kiokias S, Proestos C, Oreopoulou V. Phenolic acids of plant origin-a review on their antioxidant activity in vitro (O/W emulsion systems) along with their in vivo health biochemical properties. Foods. 2020;9(4):534.
Google Scholar
Phillips KM, Ruggio DM, Ashraf-Khorassani M. Phytosterol composition of nuts and seeds commonly consumed in the United States. J Agric Food Chem. 2005;53(24):9436–45.
Google Scholar
Neale EP, Tapsell LC, Guan V, Batterham MJ. The effect of nut consumption on markers of inflammation and endothelial function: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2017;7(11): e016863.
Google Scholar
Delgado A, Gonçalves S, Romano A. Mediterranean diet: the role of phenolic compounds from aromatic plant foods. Foods. 2023;12(4):840.
Google Scholar
Motti R. Wild plants used as herbs and spices in Italy: an ethnobotanical review. Plants. 2021;10(3):563.
Google Scholar
Rivera D, Obón C, Heinrich M, Inocencio C, Verde A, Fajardo J. Gathered Mediterranean food plants–ethnobotanical investigations and historical development. Forum Nutr. 2006;59:18–74.
Google Scholar
Bianchi A. The Mediterranean aromatic plants and their culinary use. Nat Prod Res. 2015;29(3):201–6.
Google Scholar
Dossett ML, Cohen EM, Cohen J. Integrative medicine for gastrointestinal disease. Prim Care. 2017;44(2):265–80.
Google Scholar
Agatonovic-Kustrin S, Kustrin E, Morton DW. Essential oils and functional herbs for healthy aging. Neural Regen Res. 2019;14(3):441–5.
Google Scholar
Bonaccio M, Di Castelnuovo A, Costanzo S, Ruggiero E, De Curtis A, Persichillo M, et al. Chili pepper consumption and mortality in italian adults. J Am Coll Cardiol. 2019;74(25):3139–49.
Google Scholar
Jiang TA. Health benefits of culinary herbs and spices. J AOAC Int. 2019;102(2):395–411.
Google Scholar
Carlsen MH, Halvorsen BL, Holte K, Bøhn SK, Dragland S, Sampson L, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3.
Google Scholar
Bower A, Marquez S, de Mejia EG. The health benefits of selected culinary herbs and spices found in the traditional mediterranean diet. Crit Rev Food Sci Nutr. 2016;56(16):2728–46.
Google Scholar
Mayzlish-Gati E, Fridlender M, Nallathambi R, Selvaraj G, Nadarajan S, Koltai H. Review on anti-cancer activity in wild plants of the middle east. Curr Med Chem. 2018;25(36):4656–70.
Google Scholar
Talib WH, AlHur MJ, Al Naimat S, Ahmad RE, Al-Yasari AH, Al-Dalaeen A, et al. Anticancer effect of spices used in mediterranean diet: preventive and therapeutic potentials. Front Nutr. 2022;9: 905658.
Google Scholar
Tapsell LC, Hemphill I, Cobiac L, Patch CS, Sullivan DR, Fenech M, et al. Health benefits of herbs and spices: the past, the present, the future. Med J Aust. 2006;185(S4):S1-24.
Google Scholar
Mazzocchi A, Leone L, Agostoni C, Pali-Schöll I. The secrets of the mediterranean diet does [only] olive oil matter? Nutrients. 2019;11(12):2941.
Google Scholar
Ousaaid D, Mechchate H, Laaroussi H, Hano C, Bakour M, El Ghouizi A, et al. Fruits vinegar: quality characteristics, phytochemistry, and functionality. Molecules. 2021;27(1):222.
Google Scholar
Dini I, Laneri S. Spices, condiments, extra virgin olive oil and aromas as not only flavorings, but precious allies for our wellbeing. Antioxidants (Basel). 2021;10(6):868.
Google Scholar
Rinaldi de Alvarenga JF, Tran C, Hurtado-Barroso S, Martinez-Huélamo M, Illan M, Lamuela-Raventos RM. Home cooking and ingredient synergism improve lycopene isomer production in Sofrito. Food Res Int. 2017;99(Pt 2):851–61.
Google Scholar
Dominguez-Hernandez E, Salaseviciene A, Ertbjerg P. Low-temperature long-time cooking of meat: Eating quality and underlying mechanisms. Meat Sci. 2018;143:104–13.
Google Scholar
Vallverdú-Queralt A, de Alvarenga JFR, Estruch R, Lamuela-Raventos RM. Bioactive compounds present in the Mediterranean sofrito. Food Chem. 2013;141(4):3365–72.
Google Scholar
Rinaldi de Alvarenga JF, Quifer-Rada P, Westrin V, Hurtado-Barroso S, Torrado-Prat X, Lamuela-Raventós RM. Mediterranean sofrito home-cooking technique enhances polyphenol content in tomato sauce. J Sci Food Agric. 2019;99(14):6535–45.
Google Scholar
Gagaoua M, Boudechicha H-R. Ethnic meat products of the North African and Mediterranean countries: an overview. J Ethnic Foods. 2018;5(2):83–98.
Google Scholar
Jiménez-Colmenero F, Carballo J, Cofrades S. Healthier meat and meat products: their role as functional foods. Meat Sci. 2001;59(1):5–13.
Google Scholar
Alasalvar C, Salvadó J-S, Ros E. Bioactives and health benefits of nuts and dried fruits. Food Chem. 2020;314: 126192.
Google Scholar
Abi Khalil R, Yvon S, Couderc C, Jard G, El Rammouz R, Abi Nakhoul P, et al. Traditional fermented milk products of Eastern Mediterranean countries: a cultural heritage to preserve. Int Dairy J. 2023;147: 105768.
Google Scholar
Naureen Z, Bonetti G, Medori MC, Aquilanti B, Velluti V, Matera G, et al. Foods of the Mediterranean diet: lacto-fermented food, the food pyramid and food combinations. J Prev Med Hyg. 2022;63(2 Suppl 3):E28-35.
Google Scholar
Juturu V, Wu JC. Microbial production of lactic acid: the latest development. Crit Rev Biotechnol. 2016;36(6):967–77.
Google Scholar
Şanlier N, Gökcen BB, Sezgin AC. Health benefits of fermented foods. Crit Rev Food Sci Nutr. 2019;59(3):506–27.
Google Scholar
Leeuwendaal NK, Stanton C, O’Toole PW, Beresford TP. Fermented foods, health and the gut microbiome. Nutrients. 2022;14(7):1527.
Google Scholar
Diez-Ozaeta I, Astiazaran OJ. Fermented foods: an update on evidence-based health benefits and future perspectives. Food Res Int. 2022;156: 111133.
Google Scholar
Lau SW, Chong AQ, Chin NL, Talib RA, Basha RK. Sourdough microbiome comparison and benefits. Microorganisms. 2021;9(7):1355.
Google Scholar
García-Díez J, Saraiva C. Use of starter cultures in foods from animal origin to improve their safety. Int J Environ Res Public Health. 2021;18(5):2544.
Google Scholar
Toldrá F, Gallego M, Reig M, Aristoy M-C, Mora L. Recent progress in enzymatic release of peptides in foods of animal origin and assessment of bioactivity. J Agric Food Chem. 2020;68(46):12842–55.
Google Scholar
Vidal VAS, Paglarini CS, Lorenzo JM, Munekata PES, Pollonio MAR. Salted meat products: nutritional characteristics, processing and strategies for sodium reduction. Food Rev Intl. 2023;39(4):2183–202.
Google Scholar
Zang J, Xu Y, Xia W, Regenstein JM. Quality, functionality, and microbiology of fermented fish: a review. Crit Rev Food Sci Nutr. 2020;60(7):1228–42.
Google Scholar
Hunter RW, Dhaun N, Bailey MA. The impact of excessive salt intake on human health. Nat Rev Nephrol. 2022;18(5):321–35.
Google Scholar
Sivamaruthi BS, Kesika P, Chaiyasut C. A narrative review on biogenic amines in fermented fish and meat products. J Food Sci Technol. 2021;58(5):1623–39.
Google Scholar
Bonaccio M, Di Castelnuovo A, Costanzo S, Persichillo M, De Curtis A, Donati MB, et al. Adherence to the traditional Mediterranean diet and mortality in subjects with diabetes. Prospective results from the MOLI-SANI study. Eur J Prev Cardiol. 2016;23(4):400–7.
Google Scholar
Trichopoulou A, Bamia C, Trichopoulos D. Anatomy of health effects of Mediterranean diet: Greek EPIC prospective cohort study. BMJ. 2009;338: b2337.
Google Scholar
GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015–35.
Google Scholar
Santos-Buelga C, González-Manzano S, González-Paramás AM. Wine, polyphenols, and mediterranean diets. What else is there to say? Molecules. 2021;26(18):5537.
Google Scholar
de Gaetano G, Costanzo S. Alcohol and health: praise of the J curves. J Am Coll Cardiol. 2017;70(8):923–5.
Google Scholar
GBD 2020 Alcohol Collaborators. Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020. Lancet. 2022;400(10347):185–235.
Google Scholar
Costanzo S, de Gaetano G, Di Castelnuovo A, Djoussé L, Poli A, van Velden DP. Moderate alcohol consumption and lower total mortality risk: justified doubts or established facts? Nutr Metab Cardiovasc Dis. 2019;29(10):1003–8.
Google Scholar
Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019;393(10170):447–92.
Google Scholar
Tucci M, Martini D, Del Bo C, Marino M, Battezzati A, Bertoli S, et al. An Italian-Mediterranean dietary pattern developed based on the EAT-lancet reference diet (EAT-IT): a nutritional evaluation. Foods. 2021;10(3):558.
Google Scholar
Dernini S, Berry EM. Mediterranean diet: from a healthy diet to a sustainable dietary pattern. Front Nutr. 2015;2:15.
Google Scholar
Berry EM. Sustainable food systems and the mediterranean diet. Nutrients. 2019;11(9):2229.
Google Scholar
Serra-Majem L, Tomaino L, Dernini S, Berry EM, Lairon D, Ngo de la Cruz J, et al. Updating the Mediterranean diet pyramid towards sustainability: focus on environmental concerns. Int J Environ Res Public Health. 2020;17(23):8758.
Google Scholar
Macdiarmid JI. Seasonality and dietary requirements: will eating seasonal food contribute to health and environmental sustainability? Proc Nutr Soc. 2014;73(3):368–75.
Google Scholar
Poore J, Nemecek T. Reducing food’s environmental impacts through producers and consumers. Science. 2018;360(6392):987–92.
Google Scholar
Banias G, Achillas C, Vlachokostas C, Moussiopoulos N, Stefanou M. Environmental impacts in the life cycle of olive oil: a literature review. J Sci Food Agric. 2017;97(6):1686–97.
Google Scholar
Aboussaleh Y, Capone R, Bilali HE. Mediterranean food consumption patterns: low environmental impacts and significant health-nutrition benefits. Proc Nutr Soc. 2017;76(4):543–8.
Google Scholar
Kiani AK, Medori MC, Bonetti G, Aquilanti B, Velluti V, Matera G, et al. Modern vision of the Mediterranean diet. J Prev Med Hyg. 2022;63(2 Suppl 3):E36-43.
Google Scholar
Gresshoff PM, Hayashi S, Biswas B, Mirzaei S, Indrasumunar A, Reid D, et al. The value of biodiversity in legume symbiotic nitrogen fixation and nodulation for biofuel and food production. J Plant Physiol. 2015;172:128–36.
Google Scholar
Brunori E, Maesano M, Moresi FV, Matteucci G, Biasi R, Scarascia MG. The hidden land conservation benefits of olive-based (Olea europaea L.) landscapes: an agroforestry investigation in the southern Mediterranean (Calabria region, Italy). Land Degrad Dev. 2020;31(7):801–15.
Google Scholar
Woodside J, Young IS, McKinley MC. Culturally adapting the Mediterranean Diet pattern – a way of promoting more “sustainable” dietary change? Br J Nutr. 2022;128(4):693–703.
Google Scholar
Brooks M, Foster C, Holmes M, Wiltshire J. Does consuming seasonal foods benefit the environment? Insights from recent research. Nutr Bulletin. 2011;36(4):449–53.
Google Scholar
Mattas K, Raptou E, Alayidi A, Yener G, Baourakis G. Assessing the interlinkage between biodiversity and diet through the Mediterranean diet case. Adv Nutr. 2023;14(3):570–82.
Google Scholar
Johns T, Eyzaguirre PB. Linking biodiversity, diet and health in policy and practice. Proc Nutr Soc. 2006;65(2):182–9.
Google Scholar
Medina FX. Food consumption and civil society: Mediterranean diet as a sustainable resource for the Mediterranean area. Public Health Nutr. 2011;14(12A):2346–9.
Google Scholar
Monteiro CA, Cannon G, Levy RB, Moubarac J-C, Louzada ML, Rauber F, et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr. 2019;22(5):936–41.
Google Scholar
Martini D, Godos J, Bonaccio M, Vitaglione P, Grosso G. Ultra-processed foods and nutritional dietary profile: a meta-analysis of nationally representative samples. Nutrients. 2021;13(10):3390.
Google Scholar
Monteiro CA, Moubarac JC, Cannon G, Ng SW, Popkin B. Ultra-processed products are becoming dominant in the global food system. Obes Rev. 2013;14(Suppl 2):21–8.
Google Scholar
Levy RB, Barata MF, Leite MA, Andrade GC. How and why ultra-processed foods harm human health. Proc Nutr Soc. 2023;83:1–8.
Google Scholar
Zhang Y, Giovannucci EL. Ultra-processed foods and health: a comprehensive review. Crit Rev Food Sci Nutr. 2023;63(31):10836–48.
Google Scholar
Grosso G. Role of food processing on human health and current limitations. Int J Food Sci Nutr. 2023;74(1):1–2.
Google Scholar
Srour B, Kordahi MC, Bonazzi E, Deschasaux-Tanguy M, Touvier M, Chassaing B. Ultra-processed foods and human health: from epidemiological evidence to mechanistic insights. Lancet Gastroenterol Hepatol. 2022;7(12):1128–40.
Google Scholar
Godos J, Giampieri F, Al-Qahtani WH, Scazzina F, Bonaccio M, Grosso G. Ultra-processed food consumption and relation with diet quality and Mediterranean diet in Southern Italy. Int J Environ Res Public Health. 2022;19(18):11360.
Google Scholar
de Mendonça RD, Pimenta AM, Gea A, de la Fuente-Arrillaga C, Martinez-Gonzalez MA, Lopes ACS, et al. Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra Follow-Up (SUN) cohort study. Am J Clin Nutr. 2016;104(5):1433–40.
Google Scholar
Dinu M, Tristan Asensi M, Pagliai G, Lotti S, Martini D, Colombini B, et al. Consumption of ultra-processed foods is inversely associated with adherence to the mediterranean diet: a cross-sectional study. Nutrients. 2022;14(10):2073.
Google Scholar
Ruggiero E, Esposito S, Costanzo S, Di Castelnuovo A, Cerletti C, Donati MB, et al. Ultra-processed food consumption and its correlates among Italian children, adolescents and adults from the Italian Nutrition & Health Survey (INHES) cohort study. Public Health Nutr. 2021;24(18):6258–71.
Google Scholar
Baker P, Machado P, Santos T, Sievert K, Backholer K, Hadjikakou M, et al. Ultra-processed foods and the nutrition transition: global, regional and national trends, food systems transformations and political economy drivers. Obes Rev. 2020;21(12): e13126.
Google Scholar
Alberti-Fidanza A, Paolacci CA, Chiuchiù MP, Coli R, Fruttini D, Verducci G, et al. Dietary studies on two rural Italian population groups of the Seven Countries Study. 1. Food and nutrient intake at the thirty-first year follow-up in 1991. Eur J Clin Nutr. 1994;48(2):85–91.
Google Scholar
De Lorenzo A, Alberti A, Andreoli A, Iacopino L, Serranò P, Perriello G. Food habits in a southern Italian town (Nicotera) in 1960 and 1996: still a reference Italian Mediterranean diet? Diabetes Nutr Metab. 2001;14(3):121–5.
Google Scholar
Xu Y-Y, Xie J, Yin H, Yang F-F, Ma C-M, Yang B-Y, et al. The global burden of disease attributable to low physical activity and its trends from 1990 to 2019: an analysis of the Global Burden of Disease study. Front Public Health. 2022;10:1018866.
Google Scholar
Posadzki P, Pieper D, Bajpai R, Makaruk H, Könsgen N, Neuhaus AL, et al. Exercise/physical activity and health outcomes: an overview of Cochrane systematic reviews. BMC Public Health. 2020;20(1):1724.
Google Scholar
Olateju IV, Opaleye-Enakhimion T, Udeogu JE, Asuquo J, Olaleye KT, Osa E, et al. A systematic review on the effectiveness of diet and exercise in the management of obesity. Diabetes Metab Syndr. 2023;17(4): 102759.
Google Scholar
Hershey MS, Martínez-González MÁ, Álvarez-Álvarez I, Martínez Hernández JA, Ruiz-Canela M. The Mediterranean diet and physical activity: better together than apart for the prevention of premature mortality. Br J Nutr. 2022;128(7):1413–24.
Google Scholar
Godos J, Currenti W, Angelino D, Mena P, Castellano S, Caraci F, et al. Diet and mental health: review of the recent updates on molecular mechanisms. Antioxidants (Basel). 2020;9(4):346.
Google Scholar
Grosso G. Nutritional psychiatry: how diet affects brain through gut microbiota. Nutrients. 2021;13(4):1282.
Google Scholar
Godos J, Grosso G, Castellano S, Galvano F, Caraci F, Ferri R. Association between diet and sleep quality: a systematic review. Sleep Med Rev. 2021;57: 101430.
Google Scholar
Dokova KG, Pancheva RZ, Usheva NV, Haralanova GA, Nikolova SP, Kostadinova TI, et al. Nutrition transition in Europe: east-west dimensions in the last 30 years-a narrative review. Front Nutr. 2022;9: 919112.
Google Scholar
Foscolou A, D’Cunha NM, Naumovski N, Tyrovolas S, Rallidis L, Matalas A-L, et al. Midday napping and successful aging in older people living in the mediterranean region: the epidemiological mediterranean islands study (MEDIS). Brain Sci. 2019;10(1):14.
Google Scholar
Godos J, Castellano S, Ferri R, Caraci F, Lanza G, Scazzina F, et al. Mediterranean diet and chronotype: data from Italian adults and systematic review of observational studies. Exp Gerontol. 2023;181: 112284.
Google Scholar
Fanti M, Mishra A, Longo VD, Brandhorst S. Time-restricted eating, intermittent fasting, and fasting-mimicking diets in weight loss. Curr Obes Rep. 2021;10(2):70–80.
Google Scholar
Longo VD, Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016;23(6):1048–59.
Google Scholar
Petersen MC, Gallop MR, Flores Ramos S, Zarrinpar A, Broussard JL, Chondronikola M, et al. Complex physiology and clinical implications of time-restricted eating. Physiol Rev. 2022;102(4):1991–2034.
Google Scholar
Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017;39:46–58.
Google Scholar
Melkani GC, Panda S. Time-restricted feeding for prevention and treatment of cardiometabolic disorders. J Physiol (Lond). 2017;595(12):3691–700.
Google Scholar
Liang X, Chen J, An X, Ren Y, Liu Q, Huang L, et al. The optimal time restricted eating interventions for blood pressure, weight, fat mass, glucose, and lipids: a meta-analyses and systematic review. Trends Cardiovasc Med. 2023. https://doi.org/10.1016/j.tcm.2023.10.002.
Google Scholar
Clifton KK, Ma CX, Fontana L, Peterson LL. Intermittent fasting in the prevention and treatment of cancer. CA Cancer J Clin. 2021;71(6):527–46.
Google Scholar
Currenti W, Godos J, Castellano S, Mogavero MP, Ferri R, Caraci F, et al. Time restricted feeding and mental health: a review of possible mechanisms on affective and cognitive disorders. Int J Food Sci Nutr. 2021;72(6):723–33.
Google Scholar
Currenti W, Buscemi S, Cincione RI, Cernigliaro A, Godos J, Grosso G, et al. Time-restricted feeding and metabolic outcomes in a cohort of Italian adults. Nutrients. 2021;13(5):1651.
Google Scholar
Karras SN, Koufakis T, Adamidou L, Polyzos SA, Karalazou P, Thisiadou K, et al. Similar late effects of a 7-week orthodox religious fasting and a time restricted eating pattern on anthropometric and metabolic profiles of overweight adults. Int J Food Sci Nutr. 2021;72(2):248–58.
Google Scholar
Arab A, Karimi E, Garaulet M, Scheer FAJL. Social jetlag and dietary intake: a systematic review. Sleep Med Rev. 2023;71: 101820.
Google Scholar
Phull S, Wills W, Dickinson A. Is it a pleasure to eat together? theoretical reflections on conviviality and the mediterranean diet. Sociol Compass. 2015;9(11):977–86.
Google Scholar
Medina F-X. Looking for commensality: on culture, health, heritage, and the mediterranean diet. Int J Environ Res Public Health. 2021;18(5):2605.
Google Scholar
Diolintzi A, Panagiotakos DB, Sidossis LS. From Mediterranean diet to Mediterranean lifestyle: a narrative review. Public Health Nutr. 2019;22(14):2703–13.
Google Scholar
Rovaletti ML. The post-modern society as a crisis of the commensality. Vertex. 2013;24(112):405–9.
Google Scholar
