Vossen, P. Olive oil: history, production, and characteristics of the world’s classic oils. HortScience 42, 1093–1100 (2007).

Google Scholar 

Kaniewski, D. et al. Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidences from the Middle East. Biol. Rev. 87, 885–899 (2012).

Google Scholar 

Uylaşer, V. & Yildiz, G. The historical development and nutritional importance of olive and olive oil constituted an important part of the Mediterranean diet. Crit. Rev. Food Sci. Nutr. 54, 1092–1101 (2014).

Google Scholar 

Mallamaci, R. et al. Olive tree in circular economy as a source of secondary metabolites active for human and animal health beyond oxidative stress and inflammation. Molecules 26, 1072 (2021).

CAS 

Google Scholar 

Statistics (International Olive Oil Council; 2024). https://www.internationaloliveoil.org/.

Marché de l’huile d’olive: Monde, Europe, France (FranceAgriMer, 2022). https://www.franceagrimer.fr/content/download/69135/document/20020630_MARCHE_HUILE_OLIVE_2020_2021.pdf.

Uzundumlu, A. S. & Ateş, T. Investigation of olive production in a ten-year period in 1961-2021. Turk. J. Agric. Nat. Sci. 11, 330–341 (2024).

Google Scholar 

Ben Zaied, Y. & Zouabi, O. Impacts of climate change on Tunisian olive oil output. Clim. Change 139, 535–549 (2016).

Google Scholar 

Ozdemir, Y. Effects of climate change on olive cultivation and table olive and olive oil quality. Sci. Pap. Ser. B Hortic. 60, 65–69 (2016).

Google Scholar 

Brito, C., Dinis, L. T., Moutinho-Pereira, J. & Correia, C. M. Drought stress effects and olive tree acclimation under a changing climate. Plants 8, 232 (2019).

CAS 

Google Scholar 

Fraga, H., Moriondo, M., Leolini, L. & Santos, J. A. Mediterranean olive orchards under climate change: a review of future impacts and adaptation strategies. Agronomy 11, 56 (2021).

Google Scholar 

Rapa, M. & Ciano, S. A review on life cycle assessment of the olive oil production. Sustainability 14, 654 (2022).

Google Scholar 

Picornell, A., Abreu, I. & Ribeiro, H. Trends and future projections of Olea flowering in the western Mediterranean. Agric. Meteorol. 339, 109559 (2023).

Google Scholar 

Olive Oil Production by Country 2024 (World Population Review; 2024). https://worldpopulationreview.com/country-rankings/olive-oil-production-by-country.

Santos, J. A., Costa, R. & Fraga, H. Climate change impacts on thermal growing conditions of main fruit species in Portugal. Clim. Change 140, 273–286 (2017).

Google Scholar 

Orlandi, F. et al. Impact of climate change on olive crop production in Italy. Atmosphere 11, 595 (2020).

Google Scholar 

Rodríguez Sousa, A. A., Barandica, J. M., Aguilera, P. A. & Rescia, A. J. Examining potential environmental consequences of climate change and other driving forces on the sustainability of Spanish olive groves under a socio-ecological approach. Agriculture 10, 509 (2020).

Google Scholar 

Zaied, Y. B. & Zouabi, O. Impacts of climate change on Tunisian olive oil output. Clim. Change 139, 535–549 (2016).

Google Scholar 

Ramos-Román, M. J. et al. Climate controlled historic olive tree occurrences and olive oil production in southern Spain. Glob. Planet. Change 182, 102996 (2019).

Google Scholar 

Kaniewski, D. et al. Climate change threatens olive-oil production in the Levant. Nat. Plants 9, 219–227 (2023).

Google Scholar 

Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D. & Saldarelli, P. Xylella fastidiosa in olive in Apulia: where we stand. Phytopathology 109, 175–186 (2019).

CAS 

Google Scholar 

Guo, Y. The fate of European olives. Nat. Food 1, 255 (2020).

Google Scholar 

Sicard, A. et al. Introduction and adaptation of an emerging pathogen to olive trees in Italy. Microb. Genom. 7, 000735 (2021).

CAS 

Google Scholar 

Brunetti, A. et al. Neofusicoccum mediterraneum is involved in a twig and branch dieback of olive trees observed in Salento (Apulia, Italy). Pathogens 11, 53 (2022).

CAS 

Google Scholar 

Viola, F., Caracciolo, D., Pumo, D. & Noto, L. V. Olive yield and future climate forcings. Procedia Environ. Sci. 19, 132–138 (2013).

Google Scholar 

Arenas-Castro, S., Gonçalves, J. F., Moreno, M. & Villar, R. Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Sci. Total Environ. 709, 136161 (2020).

CAS 

Google Scholar 

Sanz-Cortès, F. et al. Phenological growth stages of olive tree (Olea europaea). Ann. Appl. Biol. 140, 151–157 (2002).

Google Scholar 

Avolio, E., Orlandi, F., Bellecci, C., Fornaciari, M. & Federico, S. Assessment of the impact of climate change on the olive flowering in Calabria (southern Italy). Theor. Appl. Climatol. 107, 531–540 (2012).

Google Scholar 

Gucci, R. et al. Changes of soil properties and tree performance induced by soil management in a high-density olive orchard. Eur. J. Agron. 41, 18–27 (2012).

Google Scholar 

Orlandi, F. et al. Climatic indices in the interpretation of the phenological phases of the olive in Mediterranean areas during its biological cycle. Clim. Change 116, 263–284 (2013).

Google Scholar 

Angelopoulos, K., Dichio, B. & Xiloyannis, C. Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering. J. Exp. Bot. 47, 1093–1100 (1996).

CAS 

Google Scholar 

Todaro, V. et al. Climate change over the Mediterranean region: local temperature and precipitation variations at five pilot sites. Water 14, 2499 (2022).

Google Scholar 

Viola, F., Daly, E., Vico, G., Cannarozzo, M. & Porporato, A. Transient soil-moisture dynamics and climate change in Mediterranean ecosystems. Water Resour. Res. 44, W11412 (2008).

Google Scholar 

Pumo, D., Viola, F. & Noto, L. V. Climate changes’ effects on vegetation water stress in Mediterranean areas. Ecohydrology 3, 166–176 (2010).

Google Scholar 

Sofo, A., Dichio, B., Lontanaro, G. & Xiloyannis, C. Photosynthetic performance and light response of two olive cultivars under different water and light regimes. Photosynthetica 47, 602–608 (2009).

CAS 

Google Scholar 

Villalobos, F. J., Testi, L., Hidalgo, J., Pastor, M. & Orgaz, F. Modelling potential growth and yield of olive (Olea europea L.) canopies. Eur. J. Agron. 24, 296–303 (2006).

Google Scholar 

Gregoriou, K., Pontikis, K. & Vemmos, S. Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea L.). Photosynthetica 45, 172–181 (2007).

Google Scholar 

Cherbiy-Hoffmann, S. U., Hall, A. J. & Rousseaux, M. C. Fruit, yield, and vegetative growth responses to photosynthetically active radiation during oil synthesis in olive trees. Sci. Hortic. 150, 110–116 (2013).

Google Scholar 

Ladux, F. J., Trentacoste, E. R., Searles, P. S. & Rousseaux, M. C. Light quality environment and photomorphological responses of young olive trees. Horticulturae 7, 369 (2021).

Google Scholar 

Proietti, P. et al. Influence of light availability on fruit and oil characteristics in Olea europaea L. Acta Hortic. 949, 243–250 (2012).

Google Scholar 

Kaniewski, D. et al. Holocene palaeoecological archives of Eastern Mediterranean plant diversity: past, present and future trends. Anthropocene 45, 100430 (2024).

Google Scholar 

Haworth, M. et al. The impact of heat stress and water deficit on the photosynthetic and stomatal physiology of olive (Olea europaea L.) – a case study of the 2017 heatwave. Plants 7, 76 (2018).

CAS 

Google Scholar 

Griffin, K. L. & Seemann, J. R. Plants, CO2, and photosynthesis in the 21st century. Chem. Biol. 3, 245–254 (1996).

CAS 

Google Scholar 

Engels, S. & van Geel, B. The effects of changing solar activity on climate: contributions from palaeoclimatological studies. J. Space Weather Space Clim. 2, A09 (2012).

Google Scholar 

Ventre-Lespiaucq, A. B. et al. Field patterns of temporal variations in the light environment within the crowns of a Mediterranean evergreen tree (Olea europaea). Trees 30, 995–1009 (2016).

Google Scholar 

Ineson, S. et al. Regional climate impacts of a possible future grand solar minimum. Nat. Commun. 6, 7535 (2015).

CAS 

Google Scholar 

Maycock, A. C. et al. Possible impacts of a future grand solar minimum on climate: stratospheric and global circulation changes. J. Geophys. Res. Atmos. 120, 9043–9058 (2015).

CAS 

Google Scholar 

Polade, S. D., Gershunov, A., Cayan, D. R., Dettinger, M. D. & Pierce, D. W. Precipitation in a warming world: assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep. 7, 10783 (2017).

Google Scholar 

Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).

Google Scholar 

Fornaciari, M., Pieroni, L., Orlandi, F. & Romano, B. A new approach to consider the pollen variable in forecasting yield models. Econ. Bot. 56, 66–72 (2002).

Google Scholar 

Orlandi, F., Romano, B. & Fornaciari, M. Relationship between pollen emission and fruit production in olive (Olea europaea L.). Grana 44, 98–103 (2005).

Google Scholar 

Usoskin, I. G., Gallet, G. Y., Lopes, F., Kovaltsov, G. A. & Hulot, G. Solar activity during the Holocene: the Hallstatt Cycle and its consequence for Grand Minima and Maxima. AA 587, A150 (2016).

Google Scholar 

Scafetta, N. Solar oscillations and the orbital invariant inequalities of the solar system. Sol. Phys. 295, 33 (2020).

Google Scholar 

Steinhilber, F. et al. 9400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. USA 109, 5967–5971 (2012).

CAS 

Google Scholar 

Solanski, S. K., Usoskin, I. G., Kromer, B., Schüssler, M. & Beer, J. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084–1087 (2005).

Google Scholar 

Vonmoos, M., Beer, J. & Muscheler, R. Large variations in Holocene solar activity: Constraints from 10Be in the Greenland Ice Core Project ice core. J. Geophys. Res. 111, A10105 (2006).

Google Scholar 

Evans, J. R. Improving photosynthesis. Plant Physiol. 162, 1780–1793 (2013).

CAS 

Google Scholar 

Lémole, G., Weibel, A. & Trentacoste, E. R. Effect of shading in different periods from flowering to maturity on the fatty acid and phenolic composition of olive oil (cv. Arbequina). Sci. Hortic. 240, 162–169 (2018).

Google Scholar 

Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. AA 428, 261–285 (2004).

Google Scholar 

Hernandez-Santana, V., Fernández, J. E., Cuevas, M. V., Perez-Martin, A. & Diaz-Espejo, A. Photosynthetic limitations by water deficit: Effect on fruit and olive oil yield, leaf area and trunk diameter and its potential use to control vegetative growth of super-high-density olive orchards. Agric. Water Manag. 184, 9–18 (2017).

Google Scholar 

Langgut, D. et al. The origin and spread of olive cultivation in the Mediterranean Basin: The fossil pollen evidence. Holocene 29, 902–922 (2019).

Google Scholar 

Zohary, D. & Hopf, M. Domestication of plants in the Old World. (Clarendon Press, 2000).

Bourke, S., Zoppi, U., Meadows, J., Hua, Q. & Gibbins, S. The end of the Chalcolithic period in the south Jordan valley: new 14C determinations from Teleilat Ghassul, Jordan. Radiocarbon 46, 315–323 (2004).

CAS 

Google Scholar 

Lovell, J. L., Meadows, J. & Jacobsen, G. E. Upland olive domestication in the Chalcolithic period: new 14C determinations from El-Khawarij (Ajlun), Jordan. Radiocarbon 52, 364–371 (2010).

Google Scholar 

Zohary, M. Plants of the Bible. (Cambridge University Press, 1982).

Mazar, A., Bruins, H. J., Panitz-Cohen, N. & Van Der Plicht, J. Ladder of time at Tel Rehov: stratigraphy, archaeological context, pottery and radiocarbon dates in The Bible and radiocarbon dating: archaeology, text and science (eds Levy T. E. & Higham T.), 193-255 (Equinox, 2005).

Sharon, I., Gilboa, A., Jull, T. & Boaretto, E. Report on the first stage of the Iron Age dating project in Israel: supporting the low chronology. Radiocarbon 49, 1–46 (2007).

CAS 

Google Scholar 

Frankel, R. Presses for oil and wine in the southern Levant in the Byzantine period. DOP 51, 73–84 (1997).

Google Scholar 

Yasuda, Y. The rise and fall of olive cultivation in northwest Syria: palaeoecological study of Tell Mastuma. Jpn. Rev. 8, 251–273 (1997).

Google Scholar 

Barker, G. A tale of two deserts: contrasting desertification histories on Rome’s desert frontiers. World Archaeol. 33, 488–507 (2002).

Google Scholar 

Izdebski, A. et al. On the use of palynological data in economic history: new methods and an application to agricultural output in Central Europe, 0-2000 AD. Explor. Econ. Hist. 59, 17–39 (2016).

Google Scholar 

Izdebski, A. et al. Landscape change and trade in ancient Greece: evidence from pollen data. Econ. J. 130, 2596–2618 (2020).

Google Scholar 

Izdebski, A. et al. Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic. Nat. Ecol. Evol. 6, 297–306 (2022).

CAS 

Google Scholar 

Li, F. et al. Global water use efficiency saturation due to increased vapor pressure deficit. Science 381, 672–677 (2023).

CAS 

Google Scholar 

Zharkova, V. Modern Grand Solar Minimum will lead to terrestrial cooling. Temperature 7, 217–222 (2020).

Google Scholar 

Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D. & Waple, A. Solar forcing of regional climate change during the Maunder minimum. Science 294, 2149–2152 (2001).

CAS 

Google Scholar 

Fitter, A. H. & Hay, R. K. M. Environmental physiology of plants, third ed. (Academic Press-London, 2002).

Kasatkina, E. A., Shumilov, O. I. & Timonen, M. Solar activity imprints in tree ring-data from northwestern Russia. J. Atmos. Sol. Terr. Phys. 193, 105075 (2019).

Google Scholar 

Mufti, S. & Shah, G. N. Solar-geomagnetic activity influence on Earth’s climate. J. Atmos. Sol. Terr. Phys. 73, 1607–1615 (2011).

Google Scholar 

Svensmark, H. Cosmoclimatology: a new theory emerges. Astron. Geosci. 48, 18–24 (2007).

Google Scholar 

Kirkby, J. Cosmic rays and climate. Surv. Geophys. 28, 333–375 (2007).

Google Scholar 

Harrison, R. G. & Carslaw, K. S. Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 41, 1012 (2003).

Google Scholar 

Tramblay, Y. et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth Sci. Rev. 210, 103348 (2020).

Google Scholar 

Hochman, A., Scher, S., Quiting, J., Pinto, J. G. & Messori, G. A new view of heat wave dynamics and predictability over the eastern Mediterranean. Earth Syst. Dyn. 12, 133–149 (2021).

Google Scholar 

Chartzoulakis, K. & Psarras, G. Global change effects on crop photosynthesis and production in Mediterranean: The case of Crete, Greece. Agric. Ecosyst. Environ. 106, 147–157 (2005).

CAS 

Google Scholar 

Zargar, S. M. et al. Impact of drought on photosynthesis: molecular perspective. Plant Gene 11, 154–159 (2017).

CAS 

Google Scholar 

Trabelsi, L. et al. Impact of drought and salinity on olive water status and physiological performance in an arid climate. Agric. Water Manag. 213, 749–759 (2019).

Google Scholar 

Loumou, A. & Giourga, C. Olive groves: the life and identity of the Mediterranean. Agric. Hum. Values 20, 87–95 (2003).

Google Scholar 

Bernardi, B. et al. Harvesting system sustainability in Mediterranean olive cultivation. Sci. Total Environ. 625, 1446–1458 (2018).

CAS 

Google Scholar 

Avramidou, E. V. et al. Olive, a monumental tree; multidimensional perspective from origin to sustainability in Economically important trees: origin, evolution, genetic diversity and ecology. Sustainable development and biodiversity (eds Uthup, T. K. & Karumamkandathil, R.), 51–80 (Springer, 2024).

Zipori, I., Erel, R., Yermiyahu, U., Ben-Gal, A. & Dag, A. Sustainable management of olive orchard nutrition: a review. Agriculture 10, 11 (2020).

CAS 

Google Scholar 

Jordán, A., Zavala, L. M. & Gil, J. Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena 81, 77–85 (2010).

Google Scholar 

Rawat, J., Saxena, J. & Sanwal, P. Biochar: a sustainable approach for improving plant growth and soil properties in Biochar—an imperative amendment for soil and the environment (eds Abrol, V. & Sharmas, P.) 82151 (IntechOpen: Rijeka, 2019).

Regni, L. et al. Reuse of Olive Mill Waste As Soil Amendment. (Academic Press, Cambridge, MA, USA, 2017).

Sharma, V., Javed, B., Byrne, H., Curtin, J. & Tian, F. Zeolites as carriers of nano-fertilizers: from structures and principles to prospects and challenges. Appl. Nano Mater. 3, 163–186 (2022).

Google Scholar 

Ziskin, R., Dag, A., Yermiyahu, U. & Levy, G. J. Different amendments for combating soil sodicity in an olive orchard. Agric. Water Manag. 299, 108837 (2024).

Google Scholar 

Martins, S., Pereira, S., Dinis, L. T. & Brito, C. Enhancing olive cultivation resilience: sustainable long-term and short-term adaptation strategies to alleviate climate change impacts. Horticulturae 10, 1066 (2024).

Google Scholar 

Lavee, S., Avidan, B., Meni, Y., Kaskal, A. & Wodner, M. Three new semi-dwarf varieties of olive tree for table use. Olivae 102, 33–41 (2004).

Google Scholar 

Fraga, H., Pinto, J. G. & Santos, J. A. Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal. Agric. Water Manag. 237, 106193 (2020).

Google Scholar 

Tanasijevic, L., Todorovic, M., Pereira, L. S., Pizzigalli, C. & Lionello, P. Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agric. Water Manag. 144, 54–68 (2014).

Google Scholar 

Fereres, E. & Soriano, M. A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 58, 147–159 (2006).

Google Scholar 

Michalopoulos, G. et al. Adaptation of Mediterranean olive groves to climate change through sustainable cultivation practices. Climate 8, 54 (2020).

Google Scholar 

Kaniewski, D. et al. A high-resolution Late Holocene landscape ecological history inferred from an intramontane basin in the Western Taurus Mountains, Turkey. Quat. Sci. Rev. 26, 2201–2218 (2007).

Google Scholar 

Kaniewski, D. et al. Climate change and social unrest: a 6,000-year chronicle from the Eastern Mediterranean. Geophys. Res. Lett. 47, e2020GL087496 (2020).

Google Scholar 

Kaniewski, D. et al. Middle East coastal ecosystem response to middle-to-late Holocene abrupt climate changes. Proc. Natl. Acad. Sci. USA 105, 13941–13946 (2008).

CAS 

Google Scholar 

Kaniewski, D. et al. The Medieval Climate Anomaly and the Little Ice Age in coastal Syria inferred from pollen-derived palaeo-climatic patterns. Glob. Planet. Change 78, 178–187 (2011).

Google Scholar 

Kaniewski, D., Van Campo, E. & Weiss, H. Drought is a recurring challenge in the Middle East. Proc. Natl Acad. Sci. USA 109, 3862–3867 (2012).

CAS 

Google Scholar 

Kaniewski, D. et al. Climate change and water management in the biblical city of Dan. Sci. Adv. 3, e1700954 (2017).

Google Scholar 

Kaniewski, D. et al. Early urban impact on Mediterranean coastal environments. Sci. Rep. 3, 354 (2013).

Google Scholar 

Kaniewski, D. et al. Wild or cultivated Olea europaea L. in the eastern Mediterranean during the middle-late Holocene? A pollen-numerical approach. Holocene 19, 1039–1047 (2009).

Google Scholar 

Florenzano, A. et al. The Representativeness of Olea pollen from olive groves and the late Holocene landscape reconstruction in Central Mediterranean. Front. Earth Sci. 5, 85 (2017).

Google Scholar 

Julca, I., Vargas, P. & Gabaldón, T. Phylogenomics of the Olea europaea complex using 15 whole genomes supports recurrent genetic admixture together with differentiation into seven subspecies. BMC Biol. 21, 85 (2023).

CAS 

Google Scholar 

Rojas-Gómez, M. et al. Pollen production in olive cultivars and its interannual variability. Ann. Bot. 132, 1145–1158 (2023).

Google Scholar 

Matthias, I. & Giesecke, T. Insights into pollen source area, transport and deposition from modern pollen accumulation rates in lake sediments. Quat. Sci. Rev. 87, 12–23 (2014).

Google Scholar 

Cheddadi, R. et al. Microrefugia, climate change, and conservation of Cedrus atlantica in the Rif Mountains, Morocco. Front. Ecol. Evol. 5, 114 (2017).

Google Scholar 

Write A Comment