Aleksandrowicz, L., Green, R., Joy, E. J. M., Smith, P. & Haines, A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: a systematic review. PLoS ONE 11, e0165797 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Perignon, M., Vieux, F., Soler, L.-G., Masset, G. & Darmon, N. Improving diet sustainability through evolution of food choices: review of epidemiological studies on the environmental impact of diets. Nutr. Rev. 75, 2–17 (2017).

Article 
PubMed 

Google Scholar 

Hallström, E., Carlsson-Kanyama, A. & Börjesson, P. Environmental impact of dietary change: a systematic review. J. Clean. Prod. 91, 1–11 (2015).

Article 

Google Scholar 

Willett, W. et al. Food in the anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

Article 
PubMed 

Google Scholar 

Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1906908116 (2019).

Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

van Dooren, C. A review of the use of linear programming to optimize diets, nutritiously, economically and environmentally. Front. Nutr. 5, 48 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Gazan, R. et al. Mathematical optimization to explore tomorrow’s sustainable diets: a narrative review. Adv. Nutr. 9, 602–616 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wilson, N., Clegharn, C. L., Cobiac, L. J., Mizdrak, A. & Nghiem, N. Achieving healthy and sustainable diets: a review of the results of recent studies using mathematical optimization. Adv. Nutr. 10 (Suppl. 4), S389–S403 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Donati, M. et al. Towards a sustainable diet combining economic, environmental and nutritional objectives. Appetite 106, 48–57 (2016).

Article 
PubMed 

Google Scholar 

Barré, T. et al. Reaching nutritional adequacy does not necessarily increase exposure to food contaminants: evidence from a whole-diet modeling approach. J. Nutr. 146, 2149–2157 (2016).

Article 
PubMed 

Google Scholar 

Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).

Article 
PubMed 

Google Scholar 

Gomiero, T., Pimentel, D. & Paoletti, M. G. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit. Rev. Plant Sci. 30, 95–124 (2011).

Article 

Google Scholar 

Tuomisto, H. L., Hodge, I. D., Riordan, P. & Macdonald, D. W. Does organic farming reduce environmental impacts? A meta-analysis of European research. J. Environ. Manage. 112, 309–320 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Lynch, D. Environmental impacts of organic agriculture in temperate regions. CAB Rev. 7, 10 (2012).

Google Scholar 

Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Henckel, L., Börger, L., Meiss, H., Gaba, S. & Bretagnolle, V. Organic fields sustain weed metacommunity dynamics in farmland landscapes. Proc. R. Soc. B 282, 20150002 (2015).

Article 
PubMed 

Google Scholar 

Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS ONE 12, e0180442 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

de Gavelle, E., Huneau, J.-F., Bianchi, C., Verger, E. & Mariotti, F. Protein adequacy is primarily a matter of protein quantity, not quality: modeling an increase in plant:animal protein ratio in French adults. Nutrients 9, 1333 (2017).

Article 
PubMed Central 

Google Scholar 

Andreeva, V. A. et al. Comparison of the sociodemographic characteristics of the large NutriNet-Santé e-cohort with French census data: the issue of volunteer bias revisited. J. Epidemiol. Commun. Health 69, 893–898 (2015).

Article 

Google Scholar 

Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 

Barré, T. et al. Integrating nutrient bioavailability and co-production links when identifying sustainable diets: how low should we reduce meat consumption? PLoS ONE 13, e0191767 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Seconda, L. et al. Association between sustainable dietary patterns and body weight, overweight, and obesity risk in the NutriNet-Santé prospective cohort. Am. J. Clin. Nutr. https://doi.org/10.1093/ajcn/nqz259 (2019).

Soret, S. et al. Climate change mitigation and health effects of varied dietary patterns in real-life settings throughout North America. Am. J. Clin. Nutr. 100, 490S–495S (2014).

Article 
CAS 
PubMed 

Google Scholar 

Cobiac, L. J. & Scarborough, P. Modelling the health co-benefits of sustainable diets in the UK, France, Finland, Italy and Sweden. Eur. J. Clin. Nutr. 73, 624–633 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Milner, J. et al. Health effects of adopting low greenhouse gas emission diets in the UK. BMJ Open 5, e007364 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Platel, K. & Srinivasan, K. Bioavailability of micronutrients from plant foods: an update. Crit. Rev. Food Sci. Nutr. 56, 1608–1619 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Nair, K. M. & Augustine, L. F. Food synergies for improving bioavailability of micronutrients from plant foods. Food Chem. 238, 180–185 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Andreeva, V. A. et al. Comparison of dietary intakes between a large online cohort study (Etude NutriNet-Santé) and a nationally representative cross-sectional study (Etude Nationale Nutrition Santé) in France: addressing the issue of generalizability in e-epidemiology. Am. J. Epidemiol. 184, 660–669 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Clune, S., Crossi, E. & Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 140, 766–783 (2017).

Article 
CAS 

Google Scholar 

Kramer, G. F., Tyszler, M., van’t Veer, P. & Blonk, H. Decreasing the overall environmental impact of the Dutch diet: how to find healthy and sustainable diets with limited changes. Public Health Nutr. 20, 1699–1709 (2017).

Article 
PubMed 

Google Scholar 

Gehring, J. et al. Consumption of ultra-processed foods by pesco-vegetarians, vegetarians, and vegans: associations with duration and age at diet initiation. J. Nutr. https://doi.org/10.1093/jn/nxaa196 (2020).

Kesse-Guyot, E., Castetbon, K., Touvier, M., Hercberg, S. & Galan, P. Relative validity and reproducibility of a food frequency questionnaire designed for French adults. Ann. Nutr. Metab. 57, 153–162 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Hercberg, S. et al. The Nutrinet-Santé Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health 10, 242 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar 

Baudry, J. et al. Contribution of organic food to the diet in a large sample of French adults (the NutriNet-Santé Cohort Study). Nutrients 7, 8615–8632 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Étude Nutrinet-Santé. Table de Composition des Aliments de l’étude Nutrinet-Santé (Economica, 2013).

Gomiero, T. Food quality assessment in organic vs. conventional agricultural produce: findings and issues. Appl. Soil Ecol. 123, 714–728 (2018).

Article 

Google Scholar 

Verger, E. O., Mariotti, F., Holmes, B. A., Paineau, D. & Huneau, J.-F. Evaluation of a diet quality index based on the probability of adequate nutrient intake (PANDiet) using national French and US dietary surveys. PLoS ONE 7, e42155 (2012).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Martinez-Gonzalez, M. A. et al. A provegetarian food pattern and reduction in total mortality in the Prevencion con Dieta Mediterranea (PREDIMED) study. Am. J. Clin. Nutr. 100, 320S–328S (2014).

Article 
CAS 
PubMed 

Google Scholar 

Colombet, Z. et al. Individual characteristics associated with changes in the contribution of plant foods to dietary intake in a French prospective cohort. Eur. J. Nutr. https://doi.org/10.1007/s00394-018-1752-8 (2018).

Lacour, C. et al. Environmental impacts of plant-based diets: how does organic food consumption contribute to environmental sustainability? Front. Nutr. https://doi.org/10.3389/fnut.2018.00008 (2018).

Consumer Panels—Kantar Worldpanel Purchase Database (Kantar, 2012).

Seconda, L. et al. Assessment of the sustainability of the Mediterranean diet combined with organic food consumption: an individual behaviour approach. Nutrients 9, 61 (2017).

Article 
PubMed Central 

Google Scholar 

Seconda, L. et al. Comparing nutritional, economic, and environmental performances of diets according to their levels of greenhouse gas emissions. Climatic Change https://doi.org/10.1007/s10584-018-2195-1 (2018).

ISO 14040:2006. Management Environnemental—Analyse du Cycle de Vie (ISO, 2006); https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/03/74/37456.html

Audsley, E. et al. Harmonisation of Environmental Life Cycle Assessment for Agriculture: Final Report Concerted Action AIR3-CT94-2028 (European Commission & Directorate-General for Agriculture, 2003).

Cowell, S. J. & Clift, R. Impact assessment for LCAs involving agricultural production. Int. J. Life Cycle Assess. 2, 99–103 (1997).

Article 

Google Scholar 

Nemecek, T. & Kägi, T. Life Cycle Inventories of Agricultural Production Systems Version 2 (Ecoinvent, 2007).

International Reference Life Cycle Data System (ILCD) Handbook—General guide for Life Cycle Assessment—Provisions and Action Steps (EU Science Hub, European Commission, 2010); https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/international-reference-life-cycle-data-system-ilcd-handbook-general-guide-life-cycle

Pointereau, P. et al. DIALECTE, a comprehensive and quick tool to assess the agro-environmental performance of farms. In 10th European IFSA Symposium (IFSA, 2012).

Colomb, V. et al. (eds) in AGRIBALYSE: The French Public LCI Database for Agricultural Products: High Quality Data for Producers and Environmental Labelling D104 (EDP, 2015).

Koch, P. et al. Methodological guidelines for LCA of French agricultural products. In Life Cycle Management Conference (LCM2011) https://agritrop.cirad.fr/561176/ (Agritop, 2011).

ILCD Handbook—General Guide for Life Cycle Assessment—Detailed Guidance (EU Science Hub, European Commission, 2010).

van Dooren, C., Aiking, H. & Vellinga, P. In search of indicators to assess the environmental impact of diets. Int. J. Life Cycle Assess. 23, 1297–1314 (2018).

Article 

Google Scholar 

Goedkoop, M. et al. ReCiPe 2008: A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level. Report 1: Characterization. (Ruimte en Milieu, 2013).

Vanham, D. et al. Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Sci. Total Environ. 693, 133642 (2019).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Vergnaud, A.-C. et al. Agreement between web-based and paper versions of a socio-demographic questionnaire in the NutriNet-Santé study. Int. J. Public Health 56, 407–417 (2011).

Article 
PubMed 

Google Scholar 

Touvier, M. et al. Comparison between web-based and paper versions of a self-administered anthropometric questionnaire. Eur. J. Epidemiol. 25, 287–296 (2010).

Article 
PubMed 

Google Scholar 

Hagströmer, M., Oja, P. & Sjöström, M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 9, 755–762 (2006).

Article 
PubMed 

Google Scholar 

Mausser, H. Fields-MITACS Industrial Problems Workshop: Normalization and Other Topics in Multi-Objective Optimization (2006).

Schofield, W. N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 39(Suppl. 1), 5–41 (1985).

PubMed 

Google Scholar 

Write A Comment