Kennedy, B. K. et al. Geroscience: Linking aging to chronic disease. Cell 159, 709–713 (2014).
Google Scholar
Dugan, B., Conway, J. & Duggal, N. A. Inflammaging as a target for healthy ageing. Age and Ageing 52, afac328 (2023).
Google Scholar
Santoro, A., Bientinesi, E. & Monti, D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity?. Ageing Res Rev. 71, 101422 (2021).
Google Scholar
Doding, A. et al. Immunometabolic capacities of nutritional fatty acids in regulation of inflammatory bone cell interaction and systemic impact of periodontal infection. Front Immunol. 14, 1213026 (2023).
Google Scholar
World Health Organization. Oral health https://www.who.int/news-room/fact-sheets/detail/oral-health: WHO; [updated 14 March 202314 March 2023]. Available from: https://www.who.int/news-room/fact-sheets/detail/oral-health. (2023).
Doding, A. et al. Mediterranean diet component oleic acid increases protective lipid mediators and improves trabecular bone in a Porphyromonas gingivalis inoculation model. J. Clin. Periodontol. 50, 380–395 (2023).
Google Scholar
Gasmi Benahmed, A., Kumar Mujawdiya, P., Noor, S. & Gasmi, A. Porphyromonas gingivalis in the development of periodontitis: Impact on dysbiosis and inflammation. Arch. Razi Inst. 77, 1539–1551 (2022).
Google Scholar
Martínez-García, M. & Hernández-Lemus, E. Periodontal inflammation and systemic diseases: An overview. Front Physiol. 12, 709438 (2021).
Google Scholar
Hajishengallis, G. & Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 21, 426–440 (2021).
Google Scholar
Schulze-Späte, U. et al. Crosstalk between periodontitis and cardiovascular risk. Front Immunol. 15, 1469077 (2024).
Google Scholar
Bartha, V. et al. Effect of the Mediterranean diet on gingivitis: A randomized controlled trial. J. Clin. Periodontol. 49, 111–122 (2022).
Google Scholar
Woelber, J. P. et al. The influence of an anti-inflammatory diet on gingivitis. A randomized controlled trial. J. Clin. Periodontol. 46, 481–490 (2019).
Google Scholar
Kruse, A. B. et al. An exploratory study on the role of serum fatty acids in the short-term dietary therapy of gingivitis. Sci. Rep. 12, 4022 (2022).
Google Scholar
Ramirez-Tortosa, M. C. et al. Periodontitis is associated with altered plasma fatty acids and cardiovascular risk markers. Nutr. Metab. Cardiovasc Dis. 20, 133–139 (2010).
Google Scholar
Muluke, M. et al. Diet-induced obesity and its differential impact on periodontal bone loss. J. Dent. Res. 95, 223–229 (2016).
Google Scholar
Alsahli, A. et al. Palmitic acid reduces circulating bone formation markers in obese animals and impairs osteoblast activity via C16-ceramide accumulation. Calcif. Tissue Int. 98, 511–519 (2016).
Google Scholar
Drosatos-Tampakaki, Z. et al. Palmitic acid and DGAT1 deficiency enhance osteoclastogenesis, while oleic acid-induced triglyceride formation prevents it. J. Bone Min. Res. 29, 1183–1195 (2014).
Google Scholar
Müller, A. K. Olive oil extracts and oleic acid attenuate the LPS-induced inflammatory response in murine RAW264.7 macrophages but induce the release of prostaglandin E2. Nutrients 13, 4437 (2021).
Google Scholar
Thürmer, M. et al. PI(18:1/18:1) is a SCD1-derived lipokine that limits stress signaling. Nat. Commun. 13, 2982 (2022).
Google Scholar
Baima, G. et al. Effect of periodontitis and periodontal therapy on oral and gut microbiota. J. Dent. Res. 103, 359–368 (2024).
Google Scholar
Gan, G. et al. Unveiling the oral-gut connection: Chronic apical periodontitis accelerates atherosclerosis via gut microbiota dysbiosis and altered metabolites in apoE(-/-) Mice on a high-fat diet. Int. J. Oral. Sci. 16, 39 (2024).
Google Scholar
Kawamoto, D. et al. Oral dysbiosis in severe forms of periodontitis is associated with gut dysbiosis and correlated with salivary inflammatory mediators: A preliminary study. Front Oral. Health 2, 722495 (2021).
Google Scholar
Mann, E. R., Lam, Y. K. & Uhlig, H. H. Short-chain fatty acids: Linking diet, the microbiome and immunity. Nat. Rev. Immunol 24, 577–595 (2024).
Google Scholar
Xu, A. A. Dietary fatty acid intake and the colonic gut microbiota in humans. Nutrients 14, 2722 (2022).
Google Scholar
Zhang, P. Influence of foods and nutrition on the gut microbiome and implications for intestinal health. Int. J. Mol. Sci 23, 9588 (2022).
Google Scholar
Duffuler, P., Bhullar, K. & Wu, J. Targeting gut microbiota in osteoporosis: Impact of the microbial based functional food ingredients. Food Sci. Hum. Wellness 13, 1–29 (2023).
Google Scholar
Hills, R. D. Gut microbiome: Profound implications for diet and disease. Nutrients 11, 1613 (2019).
Google Scholar
Magne, F. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients?. Nutrients 12, 1474 (2020).
Google Scholar
Okoro, P. C. et al. A two-cohort study on the association between the gut microbiota and bone density, microarchitecture, and strength. Front Endocrinol. (Lausanne) 14, 1237727 (2023).
Google Scholar
Pacifici, R. Bone remodeling and the microbiome. Cold Spring Harb Perspect Med 8, a031203 (2018).
Google Scholar
Seely, K. D., Kotelko, C. A., Douglas, H., Bealer, B. & Brooks, A. E. The human gut microbiota: A key mediator of osteoporosis and osteogenesis. Int. J. Mol. Sci 22, 9452 (2021).
Google Scholar
Woo, V. & Alenghat, T. Epigenetic regulation by gut microbiota. Gut Microbes 14, 2022407 (2022).
Google Scholar
Heaver, S. L. et al. Characterization of inositol lipid metabolism in gut-associated Bacteroidetes. Nat. Microbiol 7, 986–1000 (2022).
Google Scholar
Brown, E. M., Clardy, J. & Xavier, R. J. Gut microbiome lipid metabolism and its impact on host physiology. Cell Host Microbe. 31, 173–186 (2023).
Google Scholar
Kindt, A. et al. The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nat. Commun. 9, 3760 (2018).
Google Scholar
Sun, Q. et al. SCD1 is the critical signaling hub to mediate metabolic diseases: Mechanism and the development of its inhibitors. Biomed. Pharmacother. 170, 115586 (2024).
Google Scholar
Chen, Y. et al. Gut microbiota and bone diseases: A growing partnership. Front. Microbiol. 13 (2022).
Bosco, N. & Noti, M. The aging gut microbiome and its impact on host immunity. Genes Immun. 22, 289–303 (2021).
Google Scholar
Maynard, C. & Weinkove, D. The gut microbiota and ageing. Subcell. Biochem 90, 351–371 (2018).
Google Scholar
Meng, C., Feng, S., Hao, Z., Dong, C. & Liu, H. Changes in gut microbiota composition with age and correlations with gut inflammation in rats. PLoS One 17, e0265430 (2022).
Google Scholar
Wu, C. S. et al. Age-dependent remodeling of gut microbiome and host serum metabolome in mice. Aging (Albany NY) 13, 6330–6345 (2021).
Google Scholar
Iwasaki, M. et al. Relationship between saturated fatty acids and periodontal disease. J. Dent. Res 90, 861–867 (2011).
Google Scholar
Geneva World Health Organization. Global oral health status report: towards universal health coverage for oral health by 2023. (2022).
Modin, C. et al. Periodontitis in young individuals: Important factors for disease progression. J. Clin. Periodontol. 51, 74–85 (2024).
Google Scholar
Hajishengallis, G. Periodontitis: From microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15, 30–44 (2015).
Google Scholar
Holmstrup, P. et al. Comorbidity of periodontal disease: Two sides of the same coin? An introduction for the clinician. J. Oral. Microbiol 9, 1332710 (2017).
Google Scholar
Van Dyke, T. E., Bartold, P. M. & Reynolds, E. C. The nexus between periodontal inflammation and dysbiosis. Front Immunol. 11, 511 (2020).
Google Scholar
Altun, E. et al. Association between dietary pattern and periodontitis-A cross-sectional study. Nutrients 13 (2021)
Marruganti, C. et al. Adherence to Mediterranean diet, physical activity level, and severity of periodontitis: Results from a university-based cross-sectional study. J. Periodontol. 93, 1218–1232 (2022).
Google Scholar
Tsigalou, C. et al. Mediterranean diet as a tool to combat inflammation and chronic diseases. An overview. Biomedicines 8. (2020)
Baylin, A., Kabagambe, E. K., Siles, X. & Campos, H. Adipose tissue biomarkers of fatty acid intake. Am. J. Clin. Nutr. 76, 750–757 (2002).
Google Scholar
Hernandez, M. L., Sicardo, M. D., Belaj, A. & Martinez-Rivas, J. M. The oleic/linoleic acid ratio in olive (Olea europaea L.) fruit mesocarp is mainly controlled by OeFAD2-2 and OeFAD2-5 genes together with the different specificity of extraplastidial acyltransferase enzymes. Front Plant Sci. 12, 653997 (2021).
Google Scholar
Fritsche, K. L. The science of fatty acids and inflammation. Adv. Nutr. 6, 293S–301S (2015).
Google Scholar
Vassiliou, E. K. et al. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems. Lipids Health Dis. 8, 25 (2009).
Google Scholar
Kunath, B. J., De Rudder, C., Laczny, C. C., Letellier, E. & Wilmes, P. The oral-gut microbiome axis in health and disease. Nat. Rev. Microbiol. 22, 791–805 (2024).
Google Scholar
Yuan, X. et al. Systemic antibiotics increase microbiota pathogenicity and oral bone loss. Int. J. Oral. Sci. 15, 4 (2023).
Google Scholar
Barber, T. M., Kabisch, S., Pfeiffer, A. F. H. & Weickert, M. O. The effects of the Mediterranean diet on health and gut microbiota. Nutrients 15, 2150 (2023).
Google Scholar
Cetinbas, M., Thai, J., Filatava, E., Gregory, K. E. & Sadreyev, R. I. Long-term dysbiosis and fluctuations of gut microbiome in antibiotic treated preterm infants. iScience 26, 107995 (2023).
Google Scholar
Patangia, D. V., Anthony Ryan, C., Dempsey, E., Paul Ross, R. & Stanton, C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 11, e1260 (2022).
Google Scholar
Li, Z. et al. Differences in alpha diversity of gut microbiota in neurological diseases. Front Neurosci. 16, 879318 (2022).
Google Scholar
Das, M. et al. Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatol. (Oxf.) 58, 2295–2304 (2019).
Google Scholar
Laubitz D. et al. Dynamics of gut microbiota recovery after antibiotic exposure in young and old mice (a pilot study). Microorganisms 9 (2021)
Giri, S. et al. The effect of Porphyromonas gingivalis on the gut microbiome of mice in relation to aging. J. Periodontal Res. 57, 1256–1266 (2022).
Google Scholar
Vaiserman, A. et al. Differences in the gut Firmicutes to Bacteroidetes ratio across age groups in healthy Ukrainian population. BMC Microbiol 20, 221 (2020).
Google Scholar
Kim, K. A., Jeong, J. J., Yoo, S. Y. & Kim, D. H. Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. BMC Microbiol 16, 9 (2016).
Google Scholar
Chovatiya, R. & Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell 54, 281–288 (2014).
Google Scholar
Belanger, M., Rodrigues, P. H., Dunn, W. A. Jr & Progulske-Fox, A. Autophagy: a highway for Porphyromonas gingivalis in endothelial cells. Autophagy 2, 165–170 (2006).
Google Scholar
Diomede, F. et al. MyD88/ERK/NFkB pathways and pro-inflammatory cytokines release in periodontal ligament stem cells stimulated by Porphyromonas gingivalis. Eur. J. Histochem 61, 2791 (2017).
Google Scholar
Hirasawa, M. & Kurita-Ochiai, T. Porphyromonas gingivalis induces apoptosis and autophagy via ER stress in human umbilical vein endothelial cells. Mediators Inflamm. 2018, 1967506 (2018).
Google Scholar
Inaba, H., Amano, A., Lamont, R. J., Murakami, Y. & Matsumoto-Nakano, M. Cell cycle arrest and apoptosis induced by porphyromonas gingivalis require Jun N-terminal protein kinase- and p53-mediated p38 activation in human trophoblasts. Infect Immun 86 (2018)
Kang, S., Dai, A., Wang, H. & Ding, P. H. Interaction between autophagy and porphyromonas gingivalis-induced inflammation. Front Cell Infect. Microbiol 12, 892610 (2022).
Google Scholar
Liang, D. Y. et al. Porphyromonas gingivalis infected macrophages upregulate CD36 expression via ERK/NF-κB pathway. Cell Signal 28, 1292–1303 (2016).
Google Scholar
Liu, J., Wang, Y. & Ouyang, X. Beyond toll-like receptors: Porphyromonas gingivalis induces IL-6, IL-8, and VCAM-1 expression through NOD-mediated NF-κB and ERK signaling pathways in periodontal fibroblasts. Inflammation 37, 522–533 (2014).
Google Scholar
Lu, C., Chen, Z., Lu, H. & Zhao, K. Porphyromonas gingivalis lipopolysaccharide regulates cell proliferation, apoptosis, autophagy in esophageal squamous cell carcinoma via TLR4/MYD88/JNK pathway. J. Clin. Biochem Nutr. 74, 213–220 (2024).
Google Scholar
Meghil, M. M. et al. Disruption of immune homeostasis in human dendritic cells via regulation of autophagy and apoptosis by porphyromonas gingivalis. Front Immunol. 10, 2286 (2019).
Google Scholar
Kim, H.-J., Moon, C. M., Kang, J. L. & Park, E.-M. Aging effects on the diurnal patterns of gut microbial composition in male and female mice. Korean J. Physiol. Pharm. 25, 575–583 (2021).
Google Scholar
Xiao, L. et al. A catalog of the mouse gut metagenome. Nat. Biotechnol. 33, 1103–1108 (2015).
Google Scholar
Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).
Google Scholar
Wade, W. G. Resilience of the oral microbiome. Periodontol 2000 86, 113–122 (2021).
Google Scholar
Popova, C., Dosseva, V. & Panov, V. Microbiology of Periodontal Diseases. A Rev. Biotechnol. Biotechnol. Equip. 27, 3754–3759 (2014).
Google Scholar
Chen, W. A., Dou, Y., Fletcher, H. M. & Boskovic D. S. Local and systemic effects of porphyromonas gingivalis infection. Microorganisms 11 (2023)
Hajishengallis, G., Chavakis, T. & Lambris, J. D. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontol 2000 84, 14–34 (2020).
Google Scholar
Baker, P. J., Dixon, M., Evans, R. T. & Roopenian, D. C. Heterogeneity of Porphyromonas gingivalis strains in the induction of alveolar bone loss in mice. Oral. Microbiol Immunol. 15, 27–32 (2000).
Google Scholar
Baker, P. J., Dixon, M. & Roopenian, D. C. Genetic control of susceptibility to Porphyromonas gingivalis-induced alveolar bone loss in mice. Infect. Immun. 68, 5864–5868 (2000).
Google Scholar
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).
Google Scholar
Walters, W. Improved bacterial 16S rRNA Gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
Google Scholar
Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 8, e1002687 (2012).
Google Scholar
Newman, M. E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006).
Google Scholar
Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open source software for exploring and manipulating networks. Proc. Int. AAAI Conf. Web Soc. Media 3, 361–362 (2009).
Google Scholar
Irie, K., Novince, C. M. & Darveau, R. P. Impact of the oral commensal flora on alveolar bone homeostasis. J. Dent. Res 93, 801–806 (2014).
Google Scholar
Matsuda, K., Haga-Tsujimura, M., Yoshie, S. & Shimomura-Kuroki, J. Characteristics of alveolar bone associated with physiological movement of molar in mice: a histological and histochemical study. Odontology 102, 98–104 (2014).
Google Scholar
Amend, S. R., Valkenburg, K. C. & Pienta, K. J. Murine hind limb long bone dissection and bone marrow isolation. J. Vis. Exp 14, 53936 (2016).
Koeberle, A., Shindou, H., Harayama, T., Yuki, K. & Shimizu, T. Polyunsaturated fatty acids are incorporated into maturating male mouse germ cells by lysophosphatidic acid acyltransferase 3. FASEB J. 26, 169–180 (2012).
Google Scholar
Koeberle, A. et al. Role of p38 mitogen-activated protein kinase in linking stearoyl-CoA desaturase-1 activity with endoplasmic reticulum homeostasis. FASEB J. 29, 2439–2449 (2015).
Google Scholar
Koeberle, A. et al. Arachidonoyl-phosphatidylcholine oscillates during the cell cycle and counteracts proliferation by suppressing Akt membrane binding. Proc. Natl. Acad. Sci. USA 110, 2546–2551 (2013).
Google Scholar