Kennedy, B. K. et al. Geroscience: Linking aging to chronic disease. Cell 159, 709–713 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Dugan, B., Conway, J. & Duggal, N. A. Inflammaging as a target for healthy ageing. Age and Ageing 52, afac328 (2023).

Article 
PubMed 

Google Scholar 

Santoro, A., Bientinesi, E. & Monti, D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity?. Ageing Res Rev. 71, 101422 (2021).

Article 
PubMed 

Google Scholar 

Doding, A. et al. Immunometabolic capacities of nutritional fatty acids in regulation of inflammatory bone cell interaction and systemic impact of periodontal infection. Front Immunol. 14, 1213026 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

World Health Organization. Oral health https://www.who.int/news-room/fact-sheets/detail/oral-health: WHO; [updated 14 March 202314 March 2023]. Available from: https://www.who.int/news-room/fact-sheets/detail/oral-health. (2023).

Doding, A. et al. Mediterranean diet component oleic acid increases protective lipid mediators and improves trabecular bone in a Porphyromonas gingivalis inoculation model. J. Clin. Periodontol. 50, 380–395 (2023).

Article 
PubMed 

Google Scholar 

Gasmi Benahmed, A., Kumar Mujawdiya, P., Noor, S. & Gasmi, A. Porphyromonas gingivalis in the development of periodontitis: Impact on dysbiosis and inflammation. Arch. Razi Inst. 77, 1539–1551 (2022).

PubMed 
PubMed Central 

Google Scholar 

Martínez-García, M. & Hernández-Lemus, E. Periodontal inflammation and systemic diseases: An overview. Front Physiol. 12, 709438 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Hajishengallis, G. & Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 21, 426–440 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Schulze-Späte, U. et al. Crosstalk between periodontitis and cardiovascular risk. Front Immunol. 15, 1469077 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar 

Bartha, V. et al. Effect of the Mediterranean diet on gingivitis: A randomized controlled trial. J. Clin. Periodontol. 49, 111–122 (2022).

Article 
PubMed 

Google Scholar 

Woelber, J. P. et al. The influence of an anti-inflammatory diet on gingivitis. A randomized controlled trial. J. Clin. Periodontol. 46, 481–490 (2019).

Article 
PubMed 

Google Scholar 

Kruse, A. B. et al. An exploratory study on the role of serum fatty acids in the short-term dietary therapy of gingivitis. Sci. Rep. 12, 4022 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ramirez-Tortosa, M. C. et al. Periodontitis is associated with altered plasma fatty acids and cardiovascular risk markers. Nutr. Metab. Cardiovasc Dis. 20, 133–139 (2010).

Article 
PubMed 

Google Scholar 

Muluke, M. et al. Diet-induced obesity and its differential impact on periodontal bone loss. J. Dent. Res. 95, 223–229 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Alsahli, A. et al. Palmitic acid reduces circulating bone formation markers in obese animals and impairs osteoblast activity via C16-ceramide accumulation. Calcif. Tissue Int. 98, 511–519 (2016).

Article 
PubMed 

Google Scholar 

Drosatos-Tampakaki, Z. et al. Palmitic acid and DGAT1 deficiency enhance osteoclastogenesis, while oleic acid-induced triglyceride formation prevents it. J. Bone Min. Res. 29, 1183–1195 (2014).

Article 

Google Scholar 

Müller, A. K. Olive oil extracts and oleic acid attenuate the LPS-induced inflammatory response in murine RAW264.7 macrophages but induce the release of prostaglandin E2. Nutrients 13, 4437 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Thürmer, M. et al. PI(18:1/18:1) is a SCD1-derived lipokine that limits stress signaling. Nat. Commun. 13, 2982 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Baima, G. et al. Effect of periodontitis and periodontal therapy on oral and gut microbiota. J. Dent. Res. 103, 359–368 (2024).

Article 
PubMed 

Google Scholar 

Gan, G. et al. Unveiling the oral-gut connection: Chronic apical periodontitis accelerates atherosclerosis via gut microbiota dysbiosis and altered metabolites in apoE(-/-) Mice on a high-fat diet. Int. J. Oral. Sci. 16, 39 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kawamoto, D. et al. Oral dysbiosis in severe forms of periodontitis is associated with gut dysbiosis and correlated with salivary inflammatory mediators: A preliminary study. Front Oral. Health 2, 722495 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Mann, E. R., Lam, Y. K. & Uhlig, H. H. Short-chain fatty acids: Linking diet, the microbiome and immunity. Nat. Rev. Immunol 24, 577–595 (2024).

Article 
PubMed 

Google Scholar 

Xu, A. A. Dietary fatty acid intake and the colonic gut microbiota in humans. Nutrients 14, 2722 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Zhang, P. Influence of foods and nutrition on the gut microbiome and implications for intestinal health. Int. J. Mol. Sci 23, 9588 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Duffuler, P., Bhullar, K. & Wu, J. Targeting gut microbiota in osteoporosis: Impact of the microbial based functional food ingredients. Food Sci. Hum. Wellness 13, 1–29 (2023).

Article 

Google Scholar 

Hills, R. D. Gut microbiome: Profound implications for diet and disease. Nutrients 11, 1613 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Magne, F. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients?. Nutrients 12, 1474 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Okoro, P. C. et al. A two-cohort study on the association between the gut microbiota and bone density, microarchitecture, and strength. Front Endocrinol. (Lausanne) 14, 1237727 (2023).

Article 
PubMed 

Google Scholar 

Pacifici, R. Bone remodeling and the microbiome. Cold Spring Harb Perspect Med 8, a031203 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Seely, K. D., Kotelko, C. A., Douglas, H., Bealer, B. & Brooks, A. E. The human gut microbiota: A key mediator of osteoporosis and osteogenesis. Int. J. Mol. Sci 22, 9452 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Woo, V. & Alenghat, T. Epigenetic regulation by gut microbiota. Gut Microbes 14, 2022407 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Heaver, S. L. et al. Characterization of inositol lipid metabolism in gut-associated Bacteroidetes. Nat. Microbiol 7, 986–1000 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Brown, E. M., Clardy, J. & Xavier, R. J. Gut microbiome lipid metabolism and its impact on host physiology. Cell Host Microbe. 31, 173–186 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kindt, A. et al. The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nat. Commun. 9, 3760 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Sun, Q. et al. SCD1 is the critical signaling hub to mediate metabolic diseases: Mechanism and the development of its inhibitors. Biomed. Pharmacother. 170, 115586 (2024).

Article 
PubMed 

Google Scholar 

Chen, Y. et al. Gut microbiota and bone diseases: A growing partnership. Front. Microbiol. 13 (2022).

Bosco, N. & Noti, M. The aging gut microbiome and its impact on host immunity. Genes Immun. 22, 289–303 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Maynard, C. & Weinkove, D. The gut microbiota and ageing. Subcell. Biochem 90, 351–371 (2018).

Article 
PubMed 

Google Scholar 

Meng, C., Feng, S., Hao, Z., Dong, C. & Liu, H. Changes in gut microbiota composition with age and correlations with gut inflammation in rats. PLoS One 17, e0265430 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wu, C. S. et al. Age-dependent remodeling of gut microbiome and host serum metabolome in mice. Aging (Albany NY) 13, 6330–6345 (2021).

Article 
PubMed 

Google Scholar 

Iwasaki, M. et al. Relationship between saturated fatty acids and periodontal disease. J. Dent. Res 90, 861–867 (2011).

Article 
PubMed 

Google Scholar 

Geneva World Health Organization. Global oral health status report: towards universal health coverage for oral health by 2023. (2022).

Modin, C. et al. Periodontitis in young individuals: Important factors for disease progression. J. Clin. Periodontol. 51, 74–85 (2024).

Article 
PubMed 

Google Scholar 

Hajishengallis, G. Periodontitis: From microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15, 30–44 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Holmstrup, P. et al. Comorbidity of periodontal disease: Two sides of the same coin? An introduction for the clinician. J. Oral. Microbiol 9, 1332710 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Van Dyke, T. E., Bartold, P. M. & Reynolds, E. C. The nexus between periodontal inflammation and dysbiosis. Front Immunol. 11, 511 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Altun, E. et al. Association between dietary pattern and periodontitis-A cross-sectional study. Nutrients 13 (2021)

Marruganti, C. et al. Adherence to Mediterranean diet, physical activity level, and severity of periodontitis: Results from a university-based cross-sectional study. J. Periodontol. 93, 1218–1232 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Tsigalou, C. et al. Mediterranean diet as a tool to combat inflammation and chronic diseases. An overview. Biomedicines 8. (2020)

Baylin, A., Kabagambe, E. K., Siles, X. & Campos, H. Adipose tissue biomarkers of fatty acid intake. Am. J. Clin. Nutr. 76, 750–757 (2002).

Article 
PubMed 

Google Scholar 

Hernandez, M. L., Sicardo, M. D., Belaj, A. & Martinez-Rivas, J. M. The oleic/linoleic acid ratio in olive (Olea europaea L.) fruit mesocarp is mainly controlled by OeFAD2-2 and OeFAD2-5 genes together with the different specificity of extraplastidial acyltransferase enzymes. Front Plant Sci. 12, 653997 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Fritsche, K. L. The science of fatty acids and inflammation. Adv. Nutr. 6, 293S–301S (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Vassiliou, E. K. et al. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems. Lipids Health Dis. 8, 25 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kunath, B. J., De Rudder, C., Laczny, C. C., Letellier, E. & Wilmes, P. The oral-gut microbiome axis in health and disease. Nat. Rev. Microbiol. 22, 791–805 (2024).

Article 
PubMed 

Google Scholar 

Yuan, X. et al. Systemic antibiotics increase microbiota pathogenicity and oral bone loss. Int. J. Oral. Sci. 15, 4 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Barber, T. M., Kabisch, S., Pfeiffer, A. F. H. & Weickert, M. O. The effects of the Mediterranean diet on health and gut microbiota. Nutrients 15, 2150 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Cetinbas, M., Thai, J., Filatava, E., Gregory, K. E. & Sadreyev, R. I. Long-term dysbiosis and fluctuations of gut microbiome in antibiotic treated preterm infants. iScience 26, 107995 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Patangia, D. V., Anthony Ryan, C., Dempsey, E., Paul Ross, R. & Stanton, C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 11, e1260 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Li, Z. et al. Differences in alpha diversity of gut microbiota in neurological diseases. Front Neurosci. 16, 879318 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Das, M. et al. Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatol. (Oxf.) 58, 2295–2304 (2019).

Article 

Google Scholar 

Laubitz D. et al. Dynamics of gut microbiota recovery after antibiotic exposure in young and old mice (a pilot study). Microorganisms 9 (2021)

Giri, S. et al. The effect of Porphyromonas gingivalis on the gut microbiome of mice in relation to aging. J. Periodontal Res. 57, 1256–1266 (2022).

Article 
PubMed 

Google Scholar 

Vaiserman, A. et al. Differences in the gut Firmicutes to Bacteroidetes ratio across age groups in healthy Ukrainian population. BMC Microbiol 20, 221 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kim, K. A., Jeong, J. J., Yoo, S. Y. & Kim, D. H. Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. BMC Microbiol 16, 9 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Chovatiya, R. & Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell 54, 281–288 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Belanger, M., Rodrigues, P. H., Dunn, W. A. Jr & Progulske-Fox, A. Autophagy: a highway for Porphyromonas gingivalis in endothelial cells. Autophagy 2, 165–170 (2006).

Article 
PubMed 

Google Scholar 

Diomede, F. et al. MyD88/ERK/NFkB pathways and pro-inflammatory cytokines release in periodontal ligament stem cells stimulated by Porphyromonas gingivalis. Eur. J. Histochem 61, 2791 (2017).

PubMed 
PubMed Central 

Google Scholar 

Hirasawa, M. & Kurita-Ochiai, T. Porphyromonas gingivalis induces apoptosis and autophagy via ER stress in human umbilical vein endothelial cells. Mediators Inflamm. 2018, 1967506 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Inaba, H., Amano, A., Lamont, R. J., Murakami, Y. & Matsumoto-Nakano, M. Cell cycle arrest and apoptosis induced by porphyromonas gingivalis require Jun N-terminal protein kinase- and p53-mediated p38 activation in human trophoblasts. Infect Immun 86 (2018)

Kang, S., Dai, A., Wang, H. & Ding, P. H. Interaction between autophagy and porphyromonas gingivalis-induced inflammation. Front Cell Infect. Microbiol 12, 892610 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Liang, D. Y. et al. Porphyromonas gingivalis infected macrophages upregulate CD36 expression via ERK/NF-κB pathway. Cell Signal 28, 1292–1303 (2016).

Article 
PubMed 

Google Scholar 

Liu, J., Wang, Y. & Ouyang, X. Beyond toll-like receptors: Porphyromonas gingivalis induces IL-6, IL-8, and VCAM-1 expression through NOD-mediated NF-κB and ERK signaling pathways in periodontal fibroblasts. Inflammation 37, 522–533 (2014).

Article 
PubMed 

Google Scholar 

Lu, C., Chen, Z., Lu, H. & Zhao, K. Porphyromonas gingivalis lipopolysaccharide regulates cell proliferation, apoptosis, autophagy in esophageal squamous cell carcinoma via TLR4/MYD88/JNK pathway. J. Clin. Biochem Nutr. 74, 213–220 (2024).

Article 
PubMed 

Google Scholar 

Meghil, M. M. et al. Disruption of immune homeostasis in human dendritic cells via regulation of autophagy and apoptosis by porphyromonas gingivalis. Front Immunol. 10, 2286 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kim, H.-J., Moon, C. M., Kang, J. L. & Park, E.-M. Aging effects on the diurnal patterns of gut microbial composition in male and female mice. Korean J. Physiol. Pharm. 25, 575–583 (2021).

Article 

Google Scholar 

Xiao, L. et al. A catalog of the mouse gut metagenome. Nat. Biotechnol. 33, 1103–1108 (2015).

Article 
PubMed 

Google Scholar 

Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wade, W. G. Resilience of the oral microbiome. Periodontol 2000 86, 113–122 (2021).

Article 
PubMed 

Google Scholar 

Popova, C., Dosseva, V. & Panov, V. Microbiology of Periodontal Diseases. A Rev. Biotechnol. Biotechnol. Equip. 27, 3754–3759 (2014).

Article 

Google Scholar 

Chen, W. A., Dou, Y., Fletcher, H. M. & Boskovic D. S. Local and systemic effects of porphyromonas gingivalis infection. Microorganisms 11 (2023)

Hajishengallis, G., Chavakis, T. & Lambris, J. D. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontol 2000 84, 14–34 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Baker, P. J., Dixon, M., Evans, R. T. & Roopenian, D. C. Heterogeneity of Porphyromonas gingivalis strains in the induction of alveolar bone loss in mice. Oral. Microbiol Immunol. 15, 27–32 (2000).

Article 
PubMed 

Google Scholar 

Baker, P. J., Dixon, M. & Roopenian, D. C. Genetic control of susceptibility to Porphyromonas gingivalis-induced alveolar bone loss in mice. Infect. Immun. 68, 5864–5868 (2000).

Article 
PubMed 
PubMed Central 

Google Scholar 

Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar 

Walters, W. Improved bacterial 16S rRNA Gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).

Article 
PubMed 

Google Scholar 

Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

Article 
PubMed 

Google Scholar 

Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 8, e1002687 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar 

Newman, M. E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006).

Article 
PubMed 
PubMed Central 

Google Scholar 

Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open source software for exploring and manipulating networks. Proc. Int. AAAI Conf. Web Soc. Media 3, 361–362 (2009).

Article 

Google Scholar 

Irie, K., Novince, C. M. & Darveau, R. P. Impact of the oral commensal flora on alveolar bone homeostasis. J. Dent. Res 93, 801–806 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Matsuda, K., Haga-Tsujimura, M., Yoshie, S. & Shimomura-Kuroki, J. Characteristics of alveolar bone associated with physiological movement of molar in mice: a histological and histochemical study. Odontology 102, 98–104 (2014).

Article 
PubMed 

Google Scholar 

Amend, S. R., Valkenburg, K. C. & Pienta, K. J. Murine hind limb long bone dissection and bone marrow isolation. J. Vis. Exp 14, 53936 (2016).

Google Scholar 

Koeberle, A., Shindou, H., Harayama, T., Yuki, K. & Shimizu, T. Polyunsaturated fatty acids are incorporated into maturating male mouse germ cells by lysophosphatidic acid acyltransferase 3. FASEB J. 26, 169–180 (2012).

Article 
PubMed 

Google Scholar 

Koeberle, A. et al. Role of p38 mitogen-activated protein kinase in linking stearoyl-CoA desaturase-1 activity with endoplasmic reticulum homeostasis. FASEB J. 29, 2439–2449 (2015).

Article 
PubMed 

Google Scholar 

Koeberle, A. et al. Arachidonoyl-phosphatidylcholine oscillates during the cell cycle and counteracts proliferation by suppressing Akt membrane binding. Proc. Natl. Acad. Sci. USA 110, 2546–2551 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar 

Write A Comment