Arena, F., Gualdi-Russo, E., Olsen, J., Philippsen, B. & Mannino, M. A. New data on agro-pastoral diets in southern Italy from the Neolithic to the Bronze Age. Archaeol. Anthropol. Sci. 12, 245 (2020).
Google Scholar
Bernardini, S., Coppa, A. & Moggi-Cecchi, J. Social dynamics and resource management strategies in copper age Italy: insights from archaeological and isotopic data. Environmentalist (2021).
Cortese, F., De Angelis, F. & Achino, K. F. Isotopic reconstruction of the subsistence strategy for a Central Italian Bronze Age community (Pastena cave, 2nd millennium BCE). Archaeol. Anthropol. Sci. 14, (2022).
Craig, O. E. et al. Stable isotope analysis of Late Upper Palaeolithic human and faunal remains from Grotta del Romito (Cosenza). Italy. J. Archaeol. Sci. 37, 2504–2512 (2010).
Google Scholar
De Angelis, F. et al. Eneolithic subsistence economy in Central Italy: First dietary reconstructions through stable isotopes. Archaeol. Anthropol. Sci. 11, 4171–4186 (2019).
Google Scholar
Gazzoni, V., Goude, G., Herrscher, E. & Guerreschi, A. Late Upper Palaeolithic human diet: first stable isotope evidence from Riparo Tagliente (Verona, Italy). Bulletins et mémoires de la Société d’anthropologie de Paris 25, 103–117 (2013).
Goude, G., Dori, I., Sparacello, V. S., Starnini, E. & Varalli, A. Multi-proxy stable isotope analyses of dentine microsections reveal diachronic changes in life history adaptations, mobility, and tuberculosis-induced wasting in prehistoric Liguria (Finale Ligure, Italy, northwestern Mediterranean). Int. J. Paleopathol. 28, 99–111 (2020).
Google Scholar
Lelli, R. et al. Examining dietary variability of the earliest farmers of south-eastern Italy. Am. J. Phys. Anthropol. 149, 380–390 (2012).
Google Scholar
Mannino, M. A., Thomas, K. D., Leng, M. J., Di Salvo, R. & Richards, M. P. Stuck to the shore? Investigating prehistoric hunter-gatherer subsistence, mobility and territoriality in a Mediterranean coastal landscape through isotope analyses on marine mollusc shell carbonates and human bone collagen. Quat. Int. 244, 88–104 (2011).
Google Scholar
Mannino, M. A. et al. Origin and diet of the prehistoric hunter-gatherers on the mediterranean island of Favignana (Ègadi Islands, Sicily). PLoS One 7 (2012).
Rumolo, A., Forstenpointner, G., Rumolo, P. & Jung, R. Palaeodiet reconstruction inferred by stable isotopes analysis of faunal and human remains at Bronze Age Punta di Zambrone (Calabria, Italy). Int. J. Osteoarchaeol. 30, 90–98 (2020).
Google Scholar
Scorrano, G., Baldoni, M., Brilli, M. & Rolfo, M. F. Effect of Neolithic transition on an Italian community: Mora Cavorso (Jenne, Rome). Archaeol. Anthropol. Sci. 11, 1443–1459 (2019).
Google Scholar
Tafuri, M. A., Craig, O. E. & Canci, A. Stable isotope evidence for the consumption of millet and other plants in Bronze Age Italy. Am. J. Phys. Anthropol. 139, 146–153 (2009).
Google Scholar
Tafuri, M, O’Connell, T, Souter, E, Libianchi, N, Robb, J. Diet during life: paleoeconomic studies of human diet using stable carbon and nitrogen isotopes. in The Archaeology of Grotta Scaloria: Ritual in Neolithic Southeast Italy (ed. Ernestine S. Elster, John E. Robb, Eugenia Isetti, Antonella Traverso) 131–138 (Cotsen Institute of Archaeology Press, 2016).
Tykot et al. Osservazioni sull’alimentazione della comunità preistorica di contrada Scintilia di Favara (AG) sulla base di analisi isotopiche. in Preistoria del cibo. L’alimentazione nella preistoria e nella protostoria (eds. Damiani, I., Cazzella, A. & Copat, V.) vol. 6 65–74 (Istituto Italiano di Preistoria e Protostoria., 2021).
Tafuri, M. A., Rottoli, M. & Cupitò, M. Estimating C4 plant consumption in Bronze Age Northeastern Italy through stable carbon and nitrogen isotopes in bone collagen. Aquat. Microb. Ecol. 28, 131–142 (2018).
Varalli, A. et al. Dietary continuity vs. discontinuity in Bronze Age Italy. The isotopic evidence from Arano di Cellore (Illasi, Verona, Italy). J. Archaeol. Sci. Rep. 7, 104–113 (2016).
Robb, J. The early Mediterranean village: agency, material culture, and social change in Neolithic Italy. (Cambridge University Press, 2007).
Roberts, P. et al. Calling all archaeologists: guidelines for terminology, methodology, data handling, and reporting when undertaking and reviewing stable isotope applications in archaeology. Rapid Commun. Mass Spectrom. 32, 361–372 (2018).
Google Scholar
O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38, 328–336 (1988).
Google Scholar
Peterson, B. J. & Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320 (1987).
Google Scholar
Heaton, T. H. E. & Vogel, J. C. Climatic influence on the isotopic composition of bone nitrogen. Nature 322, 822–823 (1986).
Google Scholar
Van Klinken, G. J., Richards, M. P. & Hedges, B. E. M. An Overview of Causes for Stable Isotopic Variations in Past European Human Populations: Environmental, Ecophysiological, and Cultural Effects. in Biogeochemical Approaches to Paleodietary Analysis (eds. Ambrose, S. H. & Katzenberg, M. A.) 39–63 (Springer US, 2002).
DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).
Google Scholar
Edgar Hare, P., Fogel, M. L., Stafford, T. W., Mitchell, A. D. & Hoering, T. C. The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. J. Archaeol. Sci. 18, 277–292 (1991).
Ambrose, S. H. & Norr, L. Experimental Evidence for the Relationship of the Carbon Isotope Ratios of Whole Diet and Dietary Protein to Those of Bone Collagen and Carbonate. in Prehistoric Human Bone: Archaeology at the Molecular Level (eds. Lambert, J. B. & Grupe, G.) 1–37 (Springer Berlin Heidelberg, 1993).
Tieszen, L. L. & Fagre, T. Effect of Diet Quality and Composition on the Isotopic Composition of Respiratory CO2, Bone Collagen, Bioapatite, and Soft Tissues. in Prehistoric Human Bone: Archaeology at the Molecular Level (eds. Lambert, J. B. & Grupe, G.) 121–155 (Springer Berlin Heidelberg, 1993).
Howland, M. R. et al. Expression of the dietary isotope signal in the compound-specific δ13C values of pig bone lipids and amino acids. Int. J. Osteoarchaeol. 13, 54–65 (2003).
Google Scholar
Jim, S., Ambrose, S. H. & Evershed, R. P. Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: Implications for their use in palaeodietary reconstruction. Geochim. Cosmochim. Acta 68, 61–72 (2004).
Google Scholar
Warinner, C. & Tuross, N. Alkaline cooking and stable isotope tissue-diet spacing in swine: Archaeological implications. J. Archaeol. Sci. 36, 1690–1697 (2009).
Google Scholar
Webb, E. C. et al. The influence of varying proportions of terrestrial and marine dietary protein on the stable carbon-isotope compositions of pig tissues from a controlled feeding experiment. Sci. Technol. Archaeol. Res. 3, 28–44 (2017).
van der Merwe, N. J. Carbon isotopes, photosynthesis, and archaeology: Different pathways of photosynthesis cause characteristic changes in carbon isotope ratios that make possible the study of prehistoric human diets. Am. Sci. 70, 596–606 (1982).
Google Scholar
DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1981).
Google Scholar
Ambrose, S. H. Controlled Diet and Climate Experiments on Nitrogen Isotope Ratios of Rats. in Biogeochemical Approaches to Paleodietary Analysis (eds. Ambrose, S. H. & Katzenberg, M. A.) 243–259 (Springer US, 2002).
Young, S. M. Metabolic mechanisms and the isotopic investigation of ancient diets with an application to human remains from Cuello, Belize. (Harvard University, 2003).
Webb, E. C., Stewart, A., Miller, B., Tarlton, J. & Evershed, R. P. Age effects and the influence of varying proportions of terrestrial and marine dietary protein on the stable nitrogen-isotope compositions of pig bone collagen and soft tissues from a controlled feeding experiment. Sci. Technol. Archaeol. Res. 2, 54–66 (2016).
Kendall, I. P., Lee, M. R. F. & Evershed, R. P. The effect of trophic level on individual amino acid δ15N values in a terrestrial ruminant food web. STAR: Sci. Technol. Archaeol. Res. 3, 135–145 (2017).
O’Connell, T. C., Kneale, C. J., Tasevska, N. & Kuhnle, G. G. C. The diet-body offset in human nitrogen isotopic values: A controlled dietary study. Am. J. Phys. Anthropol. 149, 426–434 (2012).
Google Scholar
Craig, O. E., Bondioli, L., Fattore, L., Higham, T. & Hedges, R. Evaluating marine diets through radiocarbon dating and stable isotope analysis of victims of the AD79 eruption of Vesuvius. Am. J. Phys. Anthropol. 152, 345–352 (2013).
Google Scholar
Cubas, M. et al. Long-term dietary change in Atlantic and Mediterranean Iberia with the introduction of agriculture: A stable isotope perspective. Archaeol. Anthropol. Sci. 11, 3825–3836 (2019).
Google Scholar
Horden, P. & Purcell, N. The Corrupting Sea. (Blackwell Publishing, 2000).
Vizzini, S., Savona, B., Chi, T. D. & Mazzola, A. Spatial variability of stable carbon and nitrogen isotope ratios in a Mediterranean coastal lagoon. Hydrobiologia 550, 73–82 (2005).
Google Scholar
Vika, E. & Theodoropoulou, T. Re-investigating fish consumption in Greek antiquity: results from δ13C and δ15N analysis from fish bone collagen. J. Archaeol. Sci. 39, 1618–1627 (2012).
Google Scholar
Parkinson, E. W. & McLaughlin, T. R. Lifeways at the acme of the south Italian Neolithic: New chronological and bioarchaeological data from Fonteviva, Apulia. J. Archaeol. Sci. Rep. 34, 102589 (2020).
Tafuri, M. A. et al. Herding Practices in the Ditched Villages of the Neolithic Tavoliere (Apulia, South-east Italy): A Vicious Circle? The Isotopic Evidence. in Early farmers (British Academy, 2014).
Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).
Google Scholar
Cubas, M. et al. Latitudinal gradient in dairy production with the introduction of farming in Atlantic Europe. Nat. Commun. 11, 2036 (2020).
Google Scholar
Izdebski, A. et al. Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic. Nat. Ecol. Evol. 6, 297–306 (2022).
Google Scholar
Desiato, F., Fioravanti, G., Fraschetti, P., Perconti, W. & Piervitali, E. Valori climatici normali di temperatura e precipitazione in Italia. (2015).
Vaiglova, P., Lazar, N. A., Stroud, E. A., Loftus, E. & Makarewicz, C. A. Best practices for selecting samples, analyzing data, and publishing results in isotope archaeology. Quat. Int. 650, 86–100 (2022).
Google Scholar
Monaco, A. A simulation of farming and breeding activities: comparing the economic strategies in South East Italy Neolithic communities. in Origini (ed. Manfredini, A.) 61–82 (Gangemi Editore, 2011).
Boenzi, F., Caldara, M., Pennetta, L. & Simone, O. Environmental Aspects Related to the Physical Evolution of Some Wetlands Along the Adriatic Coast of Apulia (Southern Italy): A Review. J. Coast. Res. 170–175 (2006).
Caldara, M., Muntoni, I. M., Fiorentino, G., Primavera, M. & Radina, F. Hidden Neolithic landscapes in Apulian Region. in Hidden Landscapes of Mediterranean Europe Cultural and methodological biases in pre- and protohistoric landscape studies. Proceedings of the international meeting Siena (eds. van Leusen, G., Pizziolo, L. & Sarti, M.) 2320, 183–191 (Archeopress, 2011).
Fiorentino, G. et al. Climate changes and human–environment interactions in the Apulia region of southeastern Italy during the Neolithic period. Holocene 23, 1297–1316 (2013).
Google Scholar
Cresson, P. et al. Primary production and depth drive different trophic structure and functioning of fish assemblages in French marine ecosystems. Prog. Oceanogr. 186, 102343 (2020).
Google Scholar
Graniero, L. E., Grossman, E. L. & O’Dea, A. Stable isotopes in bivalves as indicators of nutrient source in coastal waters in the Bocas del Toro Archipelago, Panama. PeerJ 4 (2016).
Mathieu-Resuge, M. et al. Different particle sources in a bivalve species of a coastal lagoon: evidence from stable isotopes, fatty acids, and compound-specific stable isotopes. Mar. Biol. 166, (2019).
Spiteri, C. D. et al. Regional asynchronicity in dairy production and processing in early farming communities of the northern Mediterranean. Proc. Natl. Acad. Sci. 113, 13594–13599 (2016).
Google Scholar
Quagliariello, A. et al. Ancient oral microbiomes support gradual Neolithic dietary shifts towards agriculture. Nat. Commun. 13 (2022).
Hedges, R., Saville, A. & O’Connell, T. C. Characterizing the diet of individuals at the neolithic chambered tomb of Hazleton north, Gloucestershire, England, using stable isotopic analysis. Archaeometry 50, 114–128 (2008).
Google Scholar
Bownes, J. M., Ascough, P. L., Cook, G. T., Murray, I. & Bonsall, C. Using stable isotopes and a bayesian mixing model (FRUITS) to investigate diet at the early neolithic site of carding Mill Bay, Scotland. Radiocarbon 59, 1275–1294 (2017).
Google Scholar
Schulting, R. J., MacDonald, R. & Richards, M. P. FRUITS of the sea? A cautionary tale regarding Bayesian modelling of palaeodiets using stable isotope data. Quat. Int. 650, 52–61 (2022).
Google Scholar
Siebke, I. et al. Crops vs. animals: regional differences in subsistence strategies of Swiss Neolithic farmers revealed by stable isotopes. Archaeol. Anthropol. Sci. 12 (2020).
Dürrwächter, C., Craig, O. E., Collins, M. J., Burger, J. & Alt, K. W. Beyond the grave: Variability in Neolithic diets in Southern Germany?. J. Archaeol. Sci. 33, 39–48 (2006).
Google Scholar
Oelze, V. M. et al. Early Neolithic diet and animal husbandry: stable isotope evidence from three Linearbandkeramik (LBK) sites in Central Germany. J. Archaeol. Sci. 38, 270–279 (2011).
Google Scholar
Münster, A. et al. 4000 years of human dietary evolution in central Germany, from the first farmers to the first elites. PLoS One 13 (2018).
Hoekman-Sites, H. A. & Giblin, J. I. Prehistoric animal use on the Great Hungarian Plain: A synthesis of isotope and residue analyses from the Neolithic and Copper Age. J. Anthropol. Archaeol. 31, 515–527 (2012).
Google Scholar
Goude, G. et al. A multidisciplinary approach to neolithic life reconstruction. J. Archaeol. Method Theory 26, 537–560 (2019).
Google Scholar
Rey, L. et al. A multi-isotope analysis of Neolithic human groups in the Yonne valley, Northern France: Insights into dietary patterns and social structure. Archaeol. Anthropol. Sci. 11, 5591–5616 (2019).
Google Scholar
Rey, L. et al. Specifying subsistence strategies of early farmers: New results from compound-specific isotopic analysis of amino acids. Int. J. Osteoarchaeol. 32, 654–668 (2022).
Google Scholar
Gibaja, J. F. et al. Human diet and the chronology of neolithic societies in the north-east of the Iberian Peninsula: The necropolises of Puig d’en Roca and Can Gelats (Girona, Spain). Archaeol. Anthropol. Sci. 9, 903–913 (2017).
Google Scholar
Fernández-Crespo, T. et al. Isotopic evidence of strong reliance on animal foods and dietary heterogeneity among Early-Middle Neolithic communities of Iberia. Archaeol. Anthropol. Sci. 11, 5463–5481 (2019).
Google Scholar
Papathanasiou, A. Stable isotope analyses in neolithic and bronze age greece: An overview. Hesperia Suppl. 49, 25–55 (2015).
Guiry, E. et al. Stable isotope palaeodietary and radiocarbon evidence from the early neolithic site of Zemunica, Dalmatia Croatia. Eur. J. Archaeol. 20, 235–256 (2017).
Google Scholar
McLaughlin, R. et al. An isotopic study of palaeodiet at the Circle and the Xemxija tombs. in Temple people: Bioarchaeology, resilience and culture in prehistoric Malta (eds. Stoddart, S. et al.) 295–302 (McDonald Institute for Archaeological Research, 2022).
Soncin, S. et al. High-resolution dietary reconstruction of victims of the AD79 Vesuvius eruption at Herculaneum by compound specific isotope analysis. Sci. Adv. 7 (2021).
Fernandes, R., Nadeau, M.-J. & Grootes, P. M. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeol. Anthropol. Sci. 4, 291–301 (2012).
Google Scholar
Killgrove, K. & Tykot, R. H. Food for Rome: A stable isotope investigation of diet in the Imperial period (1st–3rd centuries AD). J. Anthropol. Archaeol. 32, 28–38 (2013).
Google Scholar
Prowse, T., Schwarcz, H. P., Saunders, S., Macchiarelli, R. & Bondioli, L. Isotopic paleodiet studies of skeletons from the Imperial Roman-age cemetery of Isola Sacra, Rome. Italy. J. Archaeol. Sci. 31, 259–272 (2004).
Google Scholar
Tanasi, D., Tykot, R. H., Vianello, A. & Hassam, S. Stable isotope analysis of the dietary habits of a Greek community in Archaic Syracuse (Sicily): A pilot study. STAR Sci. Technol. Archaeol. Res. 3, 466–477 (2017).
Fontanals-Coll, M., Eulàlia Subirà, M., Díaz-Zorita Bonilla, M. & Gibaja, J. F. First insight into the Neolithic subsistence economy in the north-east Iberian Peninsula: paleodietary reconstruction through stable isotopes. Am. J. Phys. Anthropol. 162, 36–50 (2017).
Lightfoot, E., Boneva, B., Miracle, P. T., Šlaus, M. & O’Connell, T. C. Exploring the mesolithic and neolithic transition in croatia through isotopic investigations. Antiquity 85, 73–86 (2011).
Google Scholar
Richards, M. P. & Schulting, R. J. Touch not the fish: The Mesolithic-Neolithic change of diet and its significance. Antiquity 80, 444–456 (2006).
Google Scholar
Salazar-García, Fontanals-Coll & Goude. ‘To “seafood”or not to “seafood”?’ An isotopic perspective on dietary preferences at the Mesolithic-Neolithic transition in the Western Mediterranean. Quat. 470, 497–510 (2018).
Schulting, R. Dietary shifts at the Mesolithic-Neolithic transition in Europe: an overview of the stable isotope data. in The Oxford Handbook of the Archaeology of Diet (eds. Lee-Thorp, J. & Katzenberg, M. A.) (Oxford University Press, 2015).
Garcia Guixé, E., Richards, M. P. & Subirà, M. E. Palaeodiets of humans and fauna at the Spanish Mesolithic site of El Collado. Curr. Anthropol. 47, 549–557 (2006).
Lubell, D., Jackes, M., Schwarcz, H., Knyf, M. & Meiklejohn, C. The mesolithic-neolithic transition in Portugal: Isotopic and dental evidence of diet. J. Archaeol. Sci. 21, 201–216 (1994).
Google Scholar
Papathanasiou, A. Stable isotope analysis in Neolithic Greece and possible implications on human health. Int. J. Osteoarchaeol. 13, 314–324 (2003).
Google Scholar
Rainsford, C., O’Connor, T. & Miracle, P. Fishing in the Adriatic at the Mesolithic-Neolithic transition: Evidence from Vela Spila. Croatia. Environ. Archaeol. 19, 311–320 (2014).
Google Scholar
Fontanals-Coll, M., Subirà, M. E., Marín-Moratalla, N., Ruiz, J. & Gibaja, J. F. From Sado Valley to Europe: Mesolithic dietary practices through different geographic distributions. J. Archaeol. Sci. 50, 539–550 (2014).
Google Scholar
Fontanals-Coll, M. et al. Stable isotope analyses of amino acids reveal the importance of aquatic resources to Mediterranean coastal hunter–gatherers. Proc. Royal Soc. B 290 (2023).
Bickle, P. Stable isotopes and dynamic diets: The Mesolithic-Neolithic dietary transition in terrestrial central Europe. J. Archaeol. Sci. Rep. 22, 444–451 (2018).
Galili, E., Gopher, A., Rosen, B. & Horwitz, L. K. The emergence of the Mediterranean Fishing Village in the Levant and the anomaly of Neolithic Cyprus. in Neolithic Revolution: New perspectives on Southwest Asia in light of recent discoveries on Cyprus (eds. Peltenburg, E. & Wasse, A.) 2, 91–101 (Oxbow Books, 2004).
Pessina, A. & Tiné, V. Archeologia del Neolitico – L’Italia tra sesto e quarto millennio. (Carocci editore, 2020).
Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).
Google Scholar
Tuross, N. Comparative decalcification methods, radiocarbon dates, and stable isotopes of the VIRI bones. Radiocarbon 54, 837–844 (2012).
Google Scholar
Sayle, K. L., Brodie, C. R., Cook, G. T. & Hamilton, W. D. Sequential measurement of δ15 N, δ13 C and δ34 S values in archaeological bone collagen at the Scottish Universities Environmental Research Centre (SUERC): A new analytical frontier. Rapid Commun. Mass Spectrom. 33, 1258–1266 (2019).
Google Scholar
Binder, D. et al. Le complexe de la Céramique Imprimée en Méditerranée centrale et nord-occidentale: une synthèse chronoculturelle (VIIe et VIe millénaires AEC). in Céramiques imprimées de Méditerranée occidentale (VIe millénaire AEC): données, approches et enjeux nouveaux, Actes de la séance de la Société préhistorique française de Nice (eds. Binder, D. & Manen, C.) 18, 27–124 (Société préhistorique française, 2022).
Reimer, P. J. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
Google Scholar
Sołtysiak, A. & Fernandes, R. Much ado about nothing: assessing the impact of the 4.2 kya event on human subsistence patterns in northern Mesopotamia using stable isotope analysis. Antiquity 95, 1145–1160 (2021).
Cocozza, C., Cirelli, E., Groß, M., Teegen, W.-R. & Fernandes, R. Presenting the Compendium Isotoporum Medii Aevi, a Multi-Isotope Database for Medieval Europe. Sci. Data 9, 354 (2022).
Google Scholar
Vaiglova, P. et al. An integrated stable isotope study of plants and animals from Kouphovouno, southern Greece: A new look at Neolithic farming. J. Archaeol. Sci. 42, 201–215 (2014).
Google Scholar
Fiorentino, G., Ferrio, J. P., Bogaard, A., Araus, J. L. & Riehl, S. Stable isotopes in archaeobotanical research. Veg. Hist. Archaeobot. 24, 215–227 (2015).
Google Scholar
Fernandes, R. A simple(R) model to predict the source of dietary carbon in individual consumers. Archaeometry 58, 500–512 (2016).
Google Scholar