McMillen, I. C. et al. Developmental origins of adult health and disease: the role of periconceptional and foetal nutrition. Basic Clin. Pharmacol. Toxicol. 102, 82–89 (2008).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Velazquez, M. A., Fleming, T. P. & Watkins, A. J. Periconceptional environment and the developmental origins of disease. J. Endocrinol. 242, T33–T49 (2019).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Fleming, T. P. et al. Environmental exposures around conception: developmental pathways leading to lifetime disease risk. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph18179380 (2021).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Fleming, T. P. et al. Origins of lifetime health around the time of conception: causes and consequences. Lancet 391, 1842–1852 (2018).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Fleming, T. P., Eckert, J. J. & Denisenko, O. The role of maternal nutrition during the periconceptional period and its effect on offspring phenotype. Adv. Exp. Med. Biol. 1014, 87–105 (2017).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).

Article 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Ng, S. F. et al. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467, 963–966 (2010).

Article 
ADS 
PubMed 
MATH 
CAS 

Google Scholar 

Ng, S. F. et al. Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring. FASEB J 28, 1830–1841 (2014).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Crews, D. et al. Epigenetic transgenerational inheritance of altered stress responses. Proc. Natl. Acad. Sci. U S A 109, 9143–9148 (2012).

Article 
ADS 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Skinner, M. K. Environmental stress and epigenetic transgenerational inheritance. BMC Med. 12, 153 (2014).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

McCreary, J. K. et al. Altered brain morphology and functional connectivity reflect a vulnerable affective state after cumulative multigenerational stress in rats. Neuroscience 330, 79–89 (2016).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Manikkam, M., Tracey, R., Guerrero-Bosagna, C. & Skinner, M. K. Pesticide and insect repellent mixture (permethrin and DEET) induces epigenetic transgenerational inheritance of disease and sperm epimutations. Reprod. Toxicol. 34, 708–719 (2012).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Manikkam, M., Tracey, R., Guerrero-Bosagna, C. & Skinner, M. K. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 8, e55387 (2013).

Article 
ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Skinner, M. K. et al. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med. 11, 228 (2013).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Skinner, M. K. et al. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 11, 8 (2018).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Deng, Z. et al. Association between air pollution and sperm quality: A systematic review and meta-analysis. Environ. Pollut. 208, 663–669 (2016).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Donkin, I. & Barres, R. Sperm epigenetics and influence of environmental factors. Mol. Metab. 14, 1–11 (2018).

Article 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Siddeek, B., Mauduit, C., Simeoni, U. & Benahmed, M. Sperm epigenome as a marker of environmental exposure and lifestyle, at the origin of diseases inheritance. Mutat. Res. 778, 38–44 (2018).

Article 
CAS 

Google Scholar 

Bedi, Y., Chang, R. C., Gibbs, R., Clement, T. M. & Golding, M. C. Alterations in sperm-inherited noncoding RNAs associate with late-term fetal growth restriction induced by preconception paternal alcohol use. Reprod. Toxicol. 87, 11–20 (2019).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).

Article 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

de Castro Barbosa, T. et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol. Metab. 5, 184–197 (2016).

Article 
PubMed 
MATH 

Google Scholar 

Farazi, T. A., Juranek, S. A. & Tuschl, T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135, 1201–1214 (2008).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Patil, V. S., Zhou, R. & Rana, T. M. Gene regulation by non-coding RNAs. Crit. Rev. Biochem. Mol. Biol. 49, 16–32 (2014).

Article 
PubMed 
CAS 

Google Scholar 

Shukla, G. C., Singh, J. & Barik, S. MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol. Cell. Pharmacol. 3, 83–92 (2011).

PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Gruber, A. J. & Zavolan, M. Modulation of epigenetic regulators and cell fate decisions by miRNAs. Epigenomics 5, 671–683 (2013).

Article 
PubMed 
CAS 

Google Scholar 

Rodgers, A. B., Morgan, C. P., Leu, N. A. & Bale, T. L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl. Acad. Sci. U S A 112, 13699–13704 (2015).

Article 
ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Grandjean, V. et al. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci. Rep. 5, 18193 (2015).

Article 
ADS 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Peng, H. et al. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res. 22, 1609–1612 (2012).

Article 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Cole, C. et al. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15, 2147–2160 (2009).

Article 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Lee, Y. S., Shibata, Y., Malhotra, A. & Dutta, A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes. Dev. 23, 2639–2649 (2009).

Article 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Haussecker, D. et al. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16, 673–695 (2010).

Article 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Kumar, P., Kuscu, C. & Dutta, A. Biogenesis and Function of Transfer RNA-Related Fragments (tRFs). Trends Biochem. Sci. 41, 679–689 (2016).

Article 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Kumar, P., Mudunuri, S. B., Anaya, J. & Dutta, A. tRFdb: a database for transfer RNA fragments. Nucleic Acids Res. 43, D141-145 (2015).

Article 
PubMed 
CAS 

Google Scholar 

Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).

Article 
ADS 
PubMed 
MATH 
CAS 

Google Scholar 

Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396 (2016).

Article 
ADS 
PubMed 
MATH 
CAS 

Google Scholar 

Natt, D. et al. Human sperm displays rapid responses to diet. PLoS Biol. 17, e3000559 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Weick, E. M. & Miska, E. A. piRNAs: from biogenesis to function. Development 141, 3458–3471 (2014).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Czech, B. & Hannon, G. J. One loop to rule them all: The ping-pong cycle and piRNA-guided silencing. Trends Biochem. Sci. 41, 324–337 (2016).

Article 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Ernst, C., Odom, D. T. & Kutter, C. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat. Commun. 8, 1411 (2017).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 

Belicard, T., Jareosettasin, P. & Sarkies, P. The piRNA pathway responds to environmental signals to establish intergenerational adaptation to stress. BMC Biol. 16, 103 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Vujkovic, M. et al. The preconception Mediterranean dietary pattern in couples undergoing in vitro fertilization/intracytoplasmic sperm injection treatment increases the chance of pregnancy. Fertil. Steril. 94, 2096–2101 (2010).

Article 
PubMed 
MATH 

Google Scholar 

Toledo, E. et al. Dietary patterns and difficulty conceiving: a nested case-control study. Fertil. Steril. 96, 1149–1153 (2011).

Article 
PubMed 
MATH 

Google Scholar 

Hammiche, F. et al. Increased preconception omega-3 polyunsaturated fatty acid intake improves embryo morphology. Fertil. Steril. 95, 1820–1823 (2011).

Article 
PubMed 
CAS 

Google Scholar 

Kermack, A. J., Calder, P. C., Houghton, F. D., Godfrey, K. M. & Macklon, N. S. A randomised controlled trial of a preconceptional dietary intervention in women undergoing IVF treatment (PREPARE trial). BMC Womens Health 14, 130 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kermack, A. J. et al. The fatty acid composition of human follicular fluid is altered by a 6-week dietary intervention that includes marine omega-3 fatty acids. Lipids 56, 201–209 (2021).

Article 
PubMed 
CAS 

Google Scholar 

Kermack, A. J. et al. Effect of a 6-week “Mediterranean” dietary intervention on in vitro human embryo development: the Preconception Dietary Supplements in Assisted Reproduction double-blinded randomized controlled trial. Fertil. Steril. 113, 260–269 (2020).

Article 
PubMed 
CAS 

Google Scholar 

Capra, E. et al. Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High- and Low-motile sperm populations. BMC Genomics 18, 14 (2017).

Article 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Zhu, Q., Kirby, J. A., Chu, C. & Gou, L. T. Small Noncoding RNAs in Reproduction and Infertility. Biomedicines https://doi.org/10.3390/biomedicines9121884 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Deng, W. & Lin, H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell 2, 819–830 (2002).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Zhang, Y., Shi, J., Rassoulzadegan, M., Tuorto, F. & Chen, Q. Sperm RNA code programmes the metabolic health of offspring. Nat. Rev. Endocrinol. 15, 489–498 (2019).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Lopez, P. et al. miR-155 and miR-122 Expression of Spermatozoa in Obese Subjects. Front. Genet. 9, 175 (2018).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Ingerslev, L. R. et al. Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots. Clin. Epigenetics 10, 12 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Calder, P. C. Very long-chain n-3 fatty acids and human health: fact, fiction and the future. Proc. Nutr. Soc. 77, 52–72 (2018).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Browning, L. M. et al. Incorporation of eicosapentaenoic and docosahexaenoic acids into lipid pools when given as supplements providing doses equivalent to typical intakes of oily fish. Am. J. Clin. Nutr. 96, 748–758 (2012).

Article 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Fleming, T. P., Lucas, E. S., Watkins, A. J. & Eckert, J. J. Adaptive responses of the embryo to maternal diet and consequences for post-implantation development. Reprod. Fertil. Dev. 24, 35–44 (2011).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Francia, S. Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling. Front. Genet. 6, 320 (2015).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

De Fazio, S. et al. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 480, 259–263 (2011).

Article 
ADS 
PubMed 
MATH 

Google Scholar 

Robine, N. et al. A broadly conserved pathway generates 3’UTR-directed primary piRNAs. Curr. Biol. 19, 2066–2076 (2009).

Article 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Yu, T. et al. Long first exons and epigenetic marks distinguish conserved pachytene piRNA clusters from other mammalian genes. Nat. Commun. 12, 73 (2021).

Article 
ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Toth, K. F., Pezic, D., Stuwe, E. & Webster, A. The piRNA pathway guards the germline genome against transposable elements. Adv. Exp. Med. Biol. 886, 51–77 (2016).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Larriba, E. & Del Mazo, J. An integrative piRNA analysis of mouse gametes and zygotes reveals new potential origins and gene regulatory roles. Sci. Rep. 8, 12832 (2018).

Article 
ADS 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Li, S., Xu, Z. & Sheng, J. tRNA-derived small RNA: A novel regulatory small non-coding RNA. Genes (Basel) https://doi.org/10.3390/genes9050246 (2018).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Schimmel, P. The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat. Rev. Mol. Cell Biol. 19, 45–58 (2018).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Garcia-Lopez, J. et al. Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization. RNA 21, 946–962 (2015).

Article 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Sobala, A. & Hutvagner, G. Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdiscip Rev. RNA 2, 853–862 (2011).

Article 
PubMed 
CAS 

Google Scholar 

Cao, L. L. et al. The effect of healthy dietary patterns on male semen quality: a systematic review and meta-analysis. Asian J. Androl. 24, 549–557 (2022).

Article 
MathSciNet 
PubMed 
PubMed Central 
MATH 
CAS 

Google Scholar 

Collodel, G., Castellini, C., Lee, J. C. & Signorini, C. Relevance of fatty acids to sperm maturation and quality. Oxid Med. Cell Longev. 2020, 7038124 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

World Health Organization. (2010). WHO laboratory manual for the examination and processing of human semen, 5th ed. World Health Organization. https://iris.who.int/handle/10665/44261.

Lewis, S. E. et al. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reprod. Biomed. Online 27, 325–337 (2013).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Fisk, H. L., West, A. L., Childs, C. E., Burdge, G. C. & Calder, P. C. The use of gas chromatography to analyze compositional changes of fatty acids in rat liver tissue during pregnancy. J. Vis. Exp. https://doi.org/10.3791/51445 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Goodrich, R. J., Anton, E. & Krawetz, S. A. Isolating mRNA and small noncoding RNAs from human sperm. Methods Mol. Biol. 927, 385–396 (2013).

Article 
PubMed 
CAS 

Google Scholar 

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 

Friedlander, M. R., Mackowiak, S. D., Li, N., Chen, W. & Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40, 37–52 (2012).

Article 
PubMed 

Google Scholar 

Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Sai Lakshmi, S. & Agrawal, S. piRNABank: a web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res. 36, D173-177 (2008).

Article 
PubMed 
CAS 

Google Scholar 

Wang, J. et al. piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res. 47, D175–D180 (2019).

Article 
PubMed 
MATH 
CAS 

Google Scholar 

Dining and Cooking