Guasch-Ferré M, Willett WC. The Mediterranean diet and health: a comprehensive overview. Publication J Intern Med. 2021;290:549–66. https://doi.org/10.1111/joim.13333.
Google Scholar
Sofi F, Macchi C, Abbate R, Gensini GF, Casini A. Mediterranean diet and health. BioFactors. 2013;39:335–42. https://doi.org/10.1002/biof.1096.
Google Scholar
Schwingshackl L, Morze J, Hoffmann G. Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. Br J Pharmacol. 2019;177:1241–57. https://doi.org/10.1111/bph.14778.
Google Scholar
Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378:e24. https://doi.org/10.1056/nejmoa1800389.
Google Scholar
Livingstone KM, Celis-Morales C, Navas-Carretero S, San-Cristobal R, Macready AL, Fallaize R, et al. Effect of an Internet-based, personalized nutrition randomized trial on dietary changes associated with the Mediterranean diet: the Food4Me Study. Am J Clin Nutr. 2016;104:288–97. https://doi.org/10.3945/ajcn.115.129049.
Google Scholar
Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;348:2599–608. https://doi.org/10.1056/nejmoa025039.
Google Scholar
Boutari C, Mantzoros CS. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metab Clin Exp. 2022;133:155217. https://doi.org/10.1016/j.metabol.2022.155217.
Adolph TE, Tilg H. Western diets and chronic diseases. Nat Med. 2024;30:2133–47. https://doi.org/10.1038/s41591-024-03165-6.
Google Scholar
Tomova A, Bukovsky I, Rembert E, Yonas W, Alwarith J, Barnard ND, et al. The effects of vegetarian and vegan diets on gut microbiota. Front Nutr. 2019;6:47. https://doi.org/10.3389/fnut.2019.00047.
Google Scholar
Merra G, Noce A, Marrone G, Cintoni M, Tarsitano MG, Capacci A, et al. Influence of mediterranean diet on human gut microbiota. Nutrients. 2021;13:1–12. https://doi.org/10.3390/nu13010007.
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63. https://doi.org/10.1038/nature12820.
Google Scholar
Zinöcker MK, Lindseth IA. The Western diet-microbiome-host interaction and its role in metabolic disease. Nutrients. 2018;10(3):365. https://doi.org/10.3390/nu10030365.
Tsigalou C, Paraschaki A, Karvelas A, Kantartzi K, Gagali K, Tsairidis D, et al. Gut microbiome and Mediterranean diet in the context of obesity. Current knowledge, perspectives and potential therapeutic targets. Metabol Open. 2021;9:100081. https://doi.org/10.1016/j.metop.2021.100081.
Google Scholar
Zinöcker MK, Lindseth IA. The western diet–microbiome-host interaction and its role in metabolic disease. Nutrients. 2018;10(3):365. https://doi.org/10.3390/nu10030365.
Martínez-González MÁ, Corella D, Salas-salvadó J, Ros E, Covas MI, Fiol M, et al. Cohort profile: design and methods of the PREDIMED study. Int J Epidemiol. 2012;41:377–85. https://doi.org/10.1093/ije/dyq250.
Google Scholar
Pisanu S, Palmas V, Madau V, Casula E, Deledda A, Cusano R, et al. Impact of a moderately hypocaloric mediterranean diet on the gut microbiota composition of italian obese patients. Nutrients. 2020;12(9):2707. https://doi.org/10.3390/nu12092707.
Google Scholar
Zhu C, Sawrey-Kubicek L, Beals E, Rhodes CH, Houts HE, Sacchi R, et al. Human gut microbiome composition and tryptophan metabolites were changed differently by fast food and Mediterranean diet in 4 days: a pilot study. Nutr Res. 2020;77:62–72. https://doi.org/10.1016/j.nutres.2020.03.005.
Google Scholar
Ghosh TS, Rampelli S, Jeffery IB, Santoro A, Neto M, Capri M, et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut. 2020;69:1218–28. https://doi.org/10.1136/gutjnl-2019-319654.
Google Scholar
Ye M, Robson PJ, Eurich DT, Vena JE, Xu JY, Johnson JA. Cohort Profile: Alberta’s Tomorrow Project. Int J Epidemiol. 2017;46:1097–8l. https://doi.org/10.1093/ije/dyw256.
Google Scholar
Robson PJ, Solbak NM, Haig TR, Whelan HK, Vena JE, Akawung AK, et al. Design, methods and demographics from phase I of Alberta’s Tomorrow Project cohort: a prospective cohort profile. CMAJ Open. 2016;4:E515–27. https://doi.org/10.9778/cmajo.20160005.
Google Scholar
Shah S, Mu C, Moossavi S, Shen-Tu G, Schlicht K, Rohmann N, et al. Physical activity-induced alterations of the gut microbiota are BMI dependent. FASEB J. 2023;37:e22882. https://doi.org/10.1096/fj.202201571r.
Google Scholar
Henneke L, Schlicht K, Andreani NA, Hollstein T, Demetrowitsch T, Knappe C, et al. A dietary carbohydrate – gut Parasutterella – human fatty acid biosynthesis metabolic axis in obesity and type 2 diabetes. Gut Microbes. 2022;14(1):2057778. https://doi.org/10.1080/19490976.2022.2057778.
Mu C, Nikpoor N, Tompkins TA, Choudhary A, Wang M, Marks WN, et al. Targeted gut microbiota manipulation attenuates seizures in a model of infantile spasms syndrome. JCI Insight. 2022;7(12):e158521. https://doi.org/10.1172/jci.insight.158521.
Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. XCMS Online: a web-based platform to process untargeted metabolomic data. Anal Chem. 2012;84:5035–9. https://doi.org/10.1021/ac300698c.
Google Scholar
Pang Z, Zhou G, Ewald J, Chang L, Hacariz O, Basu N, et al. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protocols. 2022;17(8):1735–61. https://doi.org/10.1038/s41596-022-00710-w.
Google Scholar
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018;46:D608-17. https://doi.org/10.1093/nar/gkx1089.
Google Scholar
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388-95. https://doi.org/10.1093/nar/gkaa971.
Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27:747–51. https://doi.org/10.1097/01.ftd.0000179845.53213.39.
Google Scholar
Motulsky HJ, Brown RE. Detecting outliers when fitting data with nonlinear regression – A new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics. 2006;7:123. https://doi.org/10.1186/1471-2105-7-123.
Google Scholar
Shannon C. The mathematical theory of communication. 1963. MD Comput. 1997;14:306–17.
Bray J, Curtis J. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27(4):325-49. https://doi.org/10.2307/1942268.
Paliy O, Shankar V. Application of multivariate statistical techniques in microbial ecology. Mol Ecol. 2016;25:1032–57. https://doi.org/10.1111/mec.13536.
Google Scholar
Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput Biol. 2021;17:e1009442. https://doi.org/10.1371/journal.pcbi.1009442.
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60.
Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients. 2016;8(2):78. https://doi.org/10.3390/nu8020078.
Su X, Gao Y, Yang R. Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells. 2023;12(5):793. https://doi.org/10.3390/cells12050793.
Freire FDCO, da Rocha MEB. Impact of Mycotoxins on Human Health. Fungal Metabolites. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. 2016;1-23. https://doi.org/10.1007/978-3-319-19456-1_21-1.
Partridge D, Lloyd KA, Rhodes JM, Walker AW, Johnstone AM, Campbell BJ. Food additives: Assessing the impact of exposure to permitted emulsifiers on bowel and metabolic health – introducing the FADiets study. Nutr Bull. 2019;44:329–49. https://doi.org/10.1111/nbu.12408.
Google Scholar
Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. 2016;352:560–4. https://doi.org/10.1126/science.aad3503.
Google Scholar
Wang DD, Nguyen LH, Li Y, Yan Y, Ma W, Rinott E, et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat Med. 2021;27:333–43. https://doi.org/10.1038/s41591-020-01223-3.
Google Scholar
Fei N, Bernabé BP, Lie L, Baghdan D, Bedu-Addo K, Plange-Rhule J, et al. The human microbiota is associated with cardiometabolic risk across the epidemiologic transition. PLoS One. 2019;14(7):e0215262. https://doi.org/10.1371/journal.pone.0215262.
Fassarella M, Blaak EE, Penders J, Nauta A, Smidt H, Zoetendal EG. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut. 2021;70(3):595–605. https://doi.org/10.1136/gutjnl-2020-321747.
Google Scholar
Fusco W, Lorenzo MB, Cintoni M, Porcari S, Rinninella E, Kaitsas F, et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients. 2023;15(9):2211. https://doi.org/10.3390/nu15092211.
Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci Rep. 2017;7(1):2594. https://doi.org/10.1038/s41598-017-02995-4.
Seethaler B, Nguyen NK, Basrai M, Kiechle M, Walter J, Delzenne NM, et al. Short-chain fatty acids are key mediators of the favorable effects of the Mediterranean diet on intestinal barrier integrity: data from the randomized controlled LIBRE trial. Am J Clin Nutr. 2022;116:928–42. https://doi.org/10.1093/ajcn/nqac175.
Google Scholar
Clemente-Postigo M, Queipo-Ortuno MI, Boto-Ordonez M, Coin-Araguez L, Del Mar R-R, Delgado-Lista J, et al. Effect of acute and chronic red wine consumption on lipopolysaccharide concentrations. Am J Clin Nutr. 2013;97(5):1053–61. https://doi.org/10.3945/ajcn.112.051128.
Google Scholar
Le Roy CI, Wells PM, Si J, Raes J, Bell JT, Spector TD. Red Wine Consumption Associated With Increased Gut Microbiota α-Diversity in 3 Independent Cohorts. Gastroenterology. 2020;158:270-272.e2. https://doi.org/10.1053/j.gastro.2019.08.024.
Google Scholar
Tang J. Microbial metabolomics. Curr Genomics. 2011;12:391–403. https://doi.org/10.2174/138920211797248619.
Google Scholar
Palau-Rodriguez M, Tulipani S, Queipo-Ortuño MI, Urpi-Sarda M, Tinahones FJ, Andres-Lacueva C. Metabolomic insights into the intricate gut microbial-host interaction in the development of obesity and type 2 diabetes. Front Microbiol. 2015;6:1151. https://doi.org/10.3389/fmicb.2015.01151.
Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, et al. Blautia—a new functional genus with potential probiotic properties? Gut Microbes. 2021;13:1–21. https://doi.org/10.1080/19490976.2021.1875796.
Google Scholar
Han Q, Kursula P, Vavricka C, Hudson AO, Parthasarathy A, Cross PJ, et al. A three-ring circus: metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Front Mol Biosci. 2018;5:29. https://doi.org/10.3389/fmolb.2018.00029.
Google Scholar
Liu Y, Hou Y, Wang G, Zheng X, Hao H. Gut microbial metabolites of aromatic amino acids as signals in host-microbe interplay. Trends Endocrinol Metab. 2020;31:818–34. https://doi.org/10.1016/j.tem.2020.02.012.
Google Scholar
Zhang L, Yin Z, Liu X, Jin G, Wang Y, He L, et al. Dietary emulsifier polysorbate 80 exposure accelerates age-related cognitive decline. Brain Behav Immun. 2024;119:171–87. https://doi.org/10.1016/j.bbi.2024.03.052
Google Scholar
Furuhashi H, Higashiyama M, Okada Y, Kurihara C, Wada A, Horiuchi K, et al. Dietary emulsifier polysorbate-80-induced small-intestinal vulnerability to indomethacin-induced lesions via dysbiosis. J Gastroenterol Hepatol (Australia). 2020;35:110–7. https://doi.org/10.1111/jgh.14808
Google Scholar
Tang Q, Wang C, Jin G, li Y, Hou H, Wang X, et al. Early life dietary emulsifier exposure predisposes the offspring to obesity through gut microbiota-FXR axis. Food Res Int. 2022;162:111921. https://doi.org/10.1016/j.foodres.2022.111921.
Ravelli MN, Schoeller DA. Traditional self-reported dietary instruments are prone to inaccuracies and new approaches are needed. Front Nutr. 2020;7:90. https://doi.org/10.3389/fnut.2020.00090.
Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One. 2014;9(4):e93827. https://doi.org/10.1371/journal.pone.0093827.
Dining and Cooking